Spaces:
Running
Running
Revert "hide info"
Browse filesThis reverts commit 6b4b96d12ffa877b40ff7a8f086d274064f5da49.
- app.py +5 -5
- src/display/utils.py +10 -14
app.py
CHANGED
@@ -71,8 +71,8 @@ def init_leaderboard(dataframe):
|
|
71 |
search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
|
72 |
hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
|
73 |
filter_columns=[
|
74 |
-
|
75 |
-
|
76 |
ColumnFilter(
|
77 |
AutoEvalColumn.params.name,
|
78 |
type="slider",
|
@@ -80,9 +80,9 @@ def init_leaderboard(dataframe):
|
|
80 |
max=150,
|
81 |
label="Select the number of parameters (B)",
|
82 |
),
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
],
|
87 |
bool_checkboxgroup_label="Hide models",
|
88 |
interactive=False,
|
|
|
71 |
search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
|
72 |
hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
|
73 |
filter_columns=[
|
74 |
+
ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
|
75 |
+
ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
|
76 |
ColumnFilter(
|
77 |
AutoEvalColumn.params.name,
|
78 |
type="slider",
|
|
|
80 |
max=150,
|
81 |
label="Select the number of parameters (B)",
|
82 |
),
|
83 |
+
ColumnFilter(
|
84 |
+
AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=False
|
85 |
+
),
|
86 |
],
|
87 |
bool_checkboxgroup_label="Hide models",
|
88 |
interactive=False,
|
src/display/utils.py
CHANGED
@@ -22,27 +22,23 @@ class ColumnContent:
|
|
22 |
|
23 |
## Leaderboard columns
|
24 |
auto_eval_column_dict = []
|
25 |
-
|
26 |
# Init
|
27 |
-
|
28 |
-
# auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
|
29 |
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
|
30 |
-
|
31 |
-
# Scores
|
32 |
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)])
|
33 |
for task in Tasks:
|
34 |
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
|
35 |
-
|
36 |
# Model information
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
|
47 |
# We use make dataclass to dynamically fill the scores from Tasks
|
48 |
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
|
|
|
22 |
|
23 |
## Leaderboard columns
|
24 |
auto_eval_column_dict = []
|
|
|
25 |
# Init
|
26 |
+
auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
|
|
|
27 |
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
|
28 |
+
#Scores
|
|
|
29 |
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)])
|
30 |
for task in Tasks:
|
31 |
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
|
|
|
32 |
# Model information
|
33 |
+
auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
|
34 |
+
auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
|
35 |
+
auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
|
36 |
+
auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
|
37 |
+
auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
|
38 |
auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
|
39 |
+
auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False)])
|
40 |
+
auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)])
|
41 |
+
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
|
42 |
|
43 |
# We use make dataclass to dynamically fill the scores from Tasks
|
44 |
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
|