Spaces:
Running
on
Zero
Running
on
Zero
Wenzheng Chang
commited on
Commit
·
da3b980
1
Parent(s):
9562db5
add app.py
Browse files
app.py
ADDED
@@ -0,0 +1,1470 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gc
|
2 |
+
import os
|
3 |
+
import random
|
4 |
+
import re
|
5 |
+
from datetime import datetime
|
6 |
+
from typing import Dict, List, Optional, Tuple
|
7 |
+
|
8 |
+
import gradio as gr
|
9 |
+
import imageio.v3 as iio
|
10 |
+
import numpy as np
|
11 |
+
import PIL
|
12 |
+
import rootutils
|
13 |
+
import torch
|
14 |
+
from diffusers import (
|
15 |
+
AutoencoderKLCogVideoX,
|
16 |
+
CogVideoXDPMScheduler,
|
17 |
+
CogVideoXTransformer3DModel,
|
18 |
+
)
|
19 |
+
from transformers import AutoTokenizer, T5EncoderModel
|
20 |
+
|
21 |
+
|
22 |
+
rootutils.setup_root(__file__, indicator=".project-root", pythonpath=True)
|
23 |
+
|
24 |
+
from aether.pipelines.aetherv1_pipeline_cogvideox import ( # noqa: E402
|
25 |
+
AetherV1PipelineCogVideoX,
|
26 |
+
AetherV1PipelineOutput,
|
27 |
+
)
|
28 |
+
from aether.utils.postprocess_utils import ( # noqa: E402
|
29 |
+
align_camera_extrinsics,
|
30 |
+
apply_transformation,
|
31 |
+
colorize_depth,
|
32 |
+
compute_scale,
|
33 |
+
get_intrinsics,
|
34 |
+
interpolate_poses,
|
35 |
+
postprocess_pointmap,
|
36 |
+
project,
|
37 |
+
raymap_to_poses,
|
38 |
+
)
|
39 |
+
from aether.utils.visualize_utils import predictions_to_glb # noqa: E402
|
40 |
+
|
41 |
+
|
42 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
43 |
+
|
44 |
+
|
45 |
+
def seed_all(seed: int = 0) -> None:
|
46 |
+
"""
|
47 |
+
Set random seeds of all components.
|
48 |
+
"""
|
49 |
+
random.seed(seed)
|
50 |
+
np.random.seed(seed)
|
51 |
+
torch.manual_seed(seed)
|
52 |
+
torch.cuda.manual_seed_all(seed)
|
53 |
+
|
54 |
+
|
55 |
+
# Global pipeline
|
56 |
+
cogvideox_pretrained_model_name_or_path: str = "THUDM/CogVideoX-5b-I2V"
|
57 |
+
aether_pretrained_model_name_or_path: str = "AetherWorldModel/AetherV1"
|
58 |
+
pipeline = AetherV1PipelineCogVideoX(
|
59 |
+
tokenizer=AutoTokenizer.from_pretrained(
|
60 |
+
cogvideox_pretrained_model_name_or_path,
|
61 |
+
subfolder="tokenizer",
|
62 |
+
),
|
63 |
+
text_encoder=T5EncoderModel.from_pretrained(
|
64 |
+
cogvideox_pretrained_model_name_or_path, subfolder="text_encoder"
|
65 |
+
),
|
66 |
+
vae=AutoencoderKLCogVideoX.from_pretrained(
|
67 |
+
cogvideox_pretrained_model_name_or_path, subfolder="vae"
|
68 |
+
),
|
69 |
+
scheduler=CogVideoXDPMScheduler.from_pretrained(
|
70 |
+
cogvideox_pretrained_model_name_or_path, subfolder="scheduler"
|
71 |
+
),
|
72 |
+
transformer=CogVideoXTransformer3DModel.from_pretrained(
|
73 |
+
aether_pretrained_model_name_or_path, subfolder="transformer"
|
74 |
+
),
|
75 |
+
)
|
76 |
+
pipeline.vae.enable_slicing()
|
77 |
+
pipeline.vae.enable_tiling()
|
78 |
+
pipeline.to(device)
|
79 |
+
|
80 |
+
|
81 |
+
def build_pipeline() -> AetherV1PipelineCogVideoX:
|
82 |
+
"""Initialize the model pipeline."""
|
83 |
+
return pipeline
|
84 |
+
|
85 |
+
|
86 |
+
def get_window_starts(
|
87 |
+
total_frames: int, sliding_window_size: int, temporal_stride: int
|
88 |
+
) -> List[int]:
|
89 |
+
"""Calculate window start indices."""
|
90 |
+
starts = list(
|
91 |
+
range(
|
92 |
+
0,
|
93 |
+
total_frames - sliding_window_size + 1,
|
94 |
+
temporal_stride,
|
95 |
+
)
|
96 |
+
)
|
97 |
+
if (
|
98 |
+
total_frames > sliding_window_size
|
99 |
+
and (total_frames - sliding_window_size) % temporal_stride != 0
|
100 |
+
):
|
101 |
+
starts.append(total_frames - sliding_window_size)
|
102 |
+
return starts
|
103 |
+
|
104 |
+
|
105 |
+
def blend_and_merge_window_results(
|
106 |
+
window_results: List[AetherV1PipelineOutput], window_indices: List[int], args: Dict
|
107 |
+
) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
|
108 |
+
"""Blend and merge window results."""
|
109 |
+
merged_rgb = None
|
110 |
+
merged_disparity = None
|
111 |
+
merged_poses = None
|
112 |
+
merged_focals = None
|
113 |
+
align_pointmaps = args.get("align_pointmaps", True)
|
114 |
+
smooth_camera = args.get("smooth_camera", True)
|
115 |
+
smooth_method = args.get("smooth_method", "kalman") if smooth_camera else "none"
|
116 |
+
|
117 |
+
if align_pointmaps:
|
118 |
+
merged_pointmaps = None
|
119 |
+
|
120 |
+
w1 = window_results[0].disparity
|
121 |
+
|
122 |
+
for idx, (window_result, t_start) in enumerate(zip(window_results, window_indices)):
|
123 |
+
t_end = t_start + window_result.rgb.shape[0]
|
124 |
+
if idx == 0:
|
125 |
+
merged_rgb = window_result.rgb
|
126 |
+
merged_disparity = window_result.disparity
|
127 |
+
pointmap_dict = postprocess_pointmap(
|
128 |
+
window_result.disparity,
|
129 |
+
window_result.raymap,
|
130 |
+
vae_downsample_scale=8,
|
131 |
+
ray_o_scale_inv=0.1,
|
132 |
+
smooth_camera=smooth_camera,
|
133 |
+
smooth_method=smooth_method if smooth_camera else "none",
|
134 |
+
)
|
135 |
+
merged_poses = pointmap_dict["camera_pose"]
|
136 |
+
merged_focals = (
|
137 |
+
pointmap_dict["intrinsics"][:, 0, 0]
|
138 |
+
+ pointmap_dict["intrinsics"][:, 1, 1]
|
139 |
+
) / 2
|
140 |
+
if align_pointmaps:
|
141 |
+
merged_pointmaps = pointmap_dict["pointmap"]
|
142 |
+
else:
|
143 |
+
overlap_t = window_indices[idx - 1] + window_result.rgb.shape[0] - t_start
|
144 |
+
|
145 |
+
window_disparity = window_result.disparity
|
146 |
+
|
147 |
+
# Align disparity
|
148 |
+
disp_mask = window_disparity[:overlap_t].reshape(1, -1, w1.shape[-1]) > 0.1
|
149 |
+
scale = compute_scale(
|
150 |
+
window_disparity[:overlap_t].reshape(1, -1, w1.shape[-1]),
|
151 |
+
merged_disparity[-overlap_t:].reshape(1, -1, w1.shape[-1]),
|
152 |
+
disp_mask.reshape(1, -1, w1.shape[-1]),
|
153 |
+
)
|
154 |
+
window_disparity = scale * window_disparity
|
155 |
+
|
156 |
+
# Blend disparity
|
157 |
+
result_disparity = np.ones((t_end, *w1.shape[1:]))
|
158 |
+
result_disparity[:t_start] = merged_disparity[:t_start]
|
159 |
+
result_disparity[t_start + overlap_t :] = window_disparity[overlap_t:]
|
160 |
+
weight = np.linspace(1, 0, overlap_t)[:, None, None]
|
161 |
+
result_disparity[t_start : t_start + overlap_t] = merged_disparity[
|
162 |
+
t_start : t_start + overlap_t
|
163 |
+
] * weight + window_disparity[:overlap_t] * (1 - weight)
|
164 |
+
merged_disparity = result_disparity
|
165 |
+
|
166 |
+
# Blend RGB
|
167 |
+
result_rgb = np.ones((t_end, *w1.shape[1:], 3))
|
168 |
+
result_rgb[:t_start] = merged_rgb[:t_start]
|
169 |
+
result_rgb[t_start + overlap_t :] = window_result.rgb[overlap_t:]
|
170 |
+
weight_rgb = np.linspace(1, 0, overlap_t)[:, None, None, None]
|
171 |
+
result_rgb[t_start : t_start + overlap_t] = merged_rgb[
|
172 |
+
t_start : t_start + overlap_t
|
173 |
+
] * weight_rgb + window_result.rgb[:overlap_t] * (1 - weight_rgb)
|
174 |
+
merged_rgb = result_rgb
|
175 |
+
|
176 |
+
# Align poses
|
177 |
+
window_raymap = window_result.raymap
|
178 |
+
window_poses, window_Fov_x, window_Fov_y = raymap_to_poses(
|
179 |
+
window_raymap, ray_o_scale_inv=0.1
|
180 |
+
)
|
181 |
+
rel_r, rel_t, rel_s = align_camera_extrinsics(
|
182 |
+
torch.from_numpy(window_poses[:overlap_t]),
|
183 |
+
torch.from_numpy(merged_poses[-overlap_t:]),
|
184 |
+
)
|
185 |
+
aligned_window_poses = (
|
186 |
+
apply_transformation(
|
187 |
+
torch.from_numpy(window_poses),
|
188 |
+
rel_r,
|
189 |
+
rel_t,
|
190 |
+
rel_s,
|
191 |
+
return_extri=True,
|
192 |
+
)
|
193 |
+
.cpu()
|
194 |
+
.numpy()
|
195 |
+
)
|
196 |
+
|
197 |
+
result_poses = np.ones((t_end, 4, 4))
|
198 |
+
result_poses[:t_start] = merged_poses[:t_start]
|
199 |
+
result_poses[t_start + overlap_t :] = aligned_window_poses[overlap_t:]
|
200 |
+
|
201 |
+
# Interpolate poses in overlap region
|
202 |
+
weights = np.linspace(1, 0, overlap_t)
|
203 |
+
for t in range(overlap_t):
|
204 |
+
weight = weights[t]
|
205 |
+
pose1 = merged_poses[t_start + t]
|
206 |
+
pose2 = aligned_window_poses[t]
|
207 |
+
result_poses[t_start + t] = interpolate_poses(pose1, pose2, weight)
|
208 |
+
|
209 |
+
merged_poses = result_poses
|
210 |
+
|
211 |
+
# Align intrinsics
|
212 |
+
window_intrinsics, _ = get_intrinsics(
|
213 |
+
batch_size=window_poses.shape[0],
|
214 |
+
h=window_result.disparity.shape[1],
|
215 |
+
w=window_result.disparity.shape[2],
|
216 |
+
fovx=window_Fov_x,
|
217 |
+
fovy=window_Fov_y,
|
218 |
+
)
|
219 |
+
window_focals = (
|
220 |
+
window_intrinsics[:, 0, 0] + window_intrinsics[:, 1, 1]
|
221 |
+
) / 2
|
222 |
+
scale = (merged_focals[-overlap_t:] / window_focals[:overlap_t]).mean()
|
223 |
+
window_focals = scale * window_focals
|
224 |
+
result_focals = np.ones((t_end,))
|
225 |
+
result_focals[:t_start] = merged_focals[:t_start]
|
226 |
+
result_focals[t_start + overlap_t :] = window_focals[overlap_t:]
|
227 |
+
weight = np.linspace(1, 0, overlap_t)
|
228 |
+
result_focals[t_start : t_start + overlap_t] = merged_focals[
|
229 |
+
t_start : t_start + overlap_t
|
230 |
+
] * weight + window_focals[:overlap_t] * (1 - weight)
|
231 |
+
merged_focals = result_focals
|
232 |
+
|
233 |
+
if align_pointmaps:
|
234 |
+
# Align pointmaps
|
235 |
+
window_pointmaps = postprocess_pointmap(
|
236 |
+
result_disparity[t_start:],
|
237 |
+
window_raymap,
|
238 |
+
vae_downsample_scale=8,
|
239 |
+
camera_pose=aligned_window_poses,
|
240 |
+
focal=window_focals,
|
241 |
+
ray_o_scale_inv=0.1,
|
242 |
+
smooth_camera=smooth_camera,
|
243 |
+
smooth_method=smooth_method if smooth_camera else "none",
|
244 |
+
)
|
245 |
+
result_pointmaps = np.ones((t_end, *w1.shape[1:], 3))
|
246 |
+
result_pointmaps[:t_start] = merged_pointmaps[:t_start]
|
247 |
+
result_pointmaps[t_start + overlap_t :] = window_pointmaps["pointmap"][
|
248 |
+
overlap_t:
|
249 |
+
]
|
250 |
+
weight = np.linspace(1, 0, overlap_t)[:, None, None, None]
|
251 |
+
result_pointmaps[t_start : t_start + overlap_t] = merged_pointmaps[
|
252 |
+
t_start : t_start + overlap_t
|
253 |
+
] * weight + window_pointmaps["pointmap"][:overlap_t] * (1 - weight)
|
254 |
+
merged_pointmaps = result_pointmaps
|
255 |
+
|
256 |
+
# project to pointmaps
|
257 |
+
height = args.get("height", 480)
|
258 |
+
width = args.get("width", 720)
|
259 |
+
|
260 |
+
intrinsics = [
|
261 |
+
np.array([[f, 0, 0.5 * width], [0, f, 0.5 * height], [0, 0, 1]])
|
262 |
+
for f in merged_focals
|
263 |
+
]
|
264 |
+
if align_pointmaps:
|
265 |
+
pointmaps = merged_pointmaps
|
266 |
+
else:
|
267 |
+
pointmaps = np.stack(
|
268 |
+
[
|
269 |
+
project(
|
270 |
+
1 / np.clip(merged_disparity[i], 1e-8, 1e8),
|
271 |
+
intrinsics[i],
|
272 |
+
merged_poses[i],
|
273 |
+
)
|
274 |
+
for i in range(merged_poses.shape[0])
|
275 |
+
]
|
276 |
+
)
|
277 |
+
|
278 |
+
return merged_rgb, merged_disparity, merged_poses, pointmaps
|
279 |
+
|
280 |
+
|
281 |
+
def process_video_to_frames(video_path: str, fps_sample: int = 12) -> List[str]:
|
282 |
+
"""Process video into frames and save them locally."""
|
283 |
+
# Create a unique output directory
|
284 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
285 |
+
output_dir = f"temp_frames_{timestamp}"
|
286 |
+
os.makedirs(output_dir, exist_ok=True)
|
287 |
+
|
288 |
+
# Read video
|
289 |
+
video = iio.imread(video_path)
|
290 |
+
|
291 |
+
# Calculate frame interval based on original video fps
|
292 |
+
if isinstance(video, np.ndarray):
|
293 |
+
# For captured videos
|
294 |
+
total_frames = len(video)
|
295 |
+
frame_interval = max(
|
296 |
+
1, round(total_frames / (fps_sample * (total_frames / 30)))
|
297 |
+
)
|
298 |
+
else:
|
299 |
+
# Default if can't determine
|
300 |
+
frame_interval = 2
|
301 |
+
|
302 |
+
frame_paths = []
|
303 |
+
for i, frame in enumerate(video[::frame_interval]):
|
304 |
+
frame_path = os.path.join(output_dir, f"frame_{i:04d}.jpg")
|
305 |
+
if isinstance(frame, np.ndarray):
|
306 |
+
iio.imwrite(frame_path, frame)
|
307 |
+
frame_paths.append(frame_path)
|
308 |
+
|
309 |
+
return frame_paths, output_dir
|
310 |
+
|
311 |
+
|
312 |
+
def save_output_files(
|
313 |
+
rgb: np.ndarray,
|
314 |
+
disparity: np.ndarray,
|
315 |
+
poses: Optional[np.ndarray] = None,
|
316 |
+
raymap: Optional[np.ndarray] = None,
|
317 |
+
pointmap: Optional[np.ndarray] = None,
|
318 |
+
task: str = "reconstruction",
|
319 |
+
output_dir: str = "outputs",
|
320 |
+
**kwargs,
|
321 |
+
) -> Dict[str, str]:
|
322 |
+
"""
|
323 |
+
Save outputs and return paths to saved files.
|
324 |
+
"""
|
325 |
+
os.makedirs(output_dir, exist_ok=True)
|
326 |
+
|
327 |
+
if pointmap is None and raymap is not None:
|
328 |
+
# Generate pointmap from raymap and disparity
|
329 |
+
smooth_camera = kwargs.get("smooth_camera", True)
|
330 |
+
smooth_method = (
|
331 |
+
kwargs.get("smooth_method", "kalman") if smooth_camera else "none"
|
332 |
+
)
|
333 |
+
|
334 |
+
pointmap_dict = postprocess_pointmap(
|
335 |
+
disparity,
|
336 |
+
raymap,
|
337 |
+
vae_downsample_scale=8,
|
338 |
+
ray_o_scale_inv=0.1,
|
339 |
+
smooth_camera=smooth_camera,
|
340 |
+
smooth_method=smooth_method,
|
341 |
+
)
|
342 |
+
pointmap = pointmap_dict["pointmap"]
|
343 |
+
|
344 |
+
if poses is None and raymap is not None:
|
345 |
+
poses, _, _ = raymap_to_poses(raymap, ray_o_scale_inv=0.1)
|
346 |
+
|
347 |
+
# Create a unique filename
|
348 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
349 |
+
base_filename = f"{task}_{timestamp}"
|
350 |
+
|
351 |
+
# Paths for saved files
|
352 |
+
paths = {}
|
353 |
+
|
354 |
+
# Save RGB video
|
355 |
+
rgb_path = os.path.join(output_dir, f"{base_filename}_rgb.mp4")
|
356 |
+
iio.imwrite(
|
357 |
+
rgb_path,
|
358 |
+
(np.clip(rgb, 0, 1) * 255).astype(np.uint8),
|
359 |
+
fps=kwargs.get("fps", 12),
|
360 |
+
)
|
361 |
+
paths["rgb"] = rgb_path
|
362 |
+
|
363 |
+
# Save depth/disparity video
|
364 |
+
depth_path = os.path.join(output_dir, f"{base_filename}_disparity.mp4")
|
365 |
+
iio.imwrite(
|
366 |
+
depth_path,
|
367 |
+
(colorize_depth(disparity) * 255).astype(np.uint8),
|
368 |
+
fps=kwargs.get("fps", 12),
|
369 |
+
)
|
370 |
+
paths["disparity"] = depth_path
|
371 |
+
|
372 |
+
# Save point cloud GLB files
|
373 |
+
if pointmap is not None and poses is not None:
|
374 |
+
pointcloud_save_frame_interval = kwargs.get(
|
375 |
+
"pointcloud_save_frame_interval", 10
|
376 |
+
)
|
377 |
+
max_depth = kwargs.get("max_depth", 100.0)
|
378 |
+
rtol = kwargs.get("rtol", 0.03)
|
379 |
+
|
380 |
+
glb_paths = []
|
381 |
+
# Determine which frames to save based on the interval
|
382 |
+
frames_to_save = list(
|
383 |
+
range(0, pointmap.shape[0], pointcloud_save_frame_interval)
|
384 |
+
)
|
385 |
+
|
386 |
+
# Always include the first and last frame
|
387 |
+
if 0 not in frames_to_save:
|
388 |
+
frames_to_save.insert(0, 0)
|
389 |
+
if pointmap.shape[0] - 1 not in frames_to_save:
|
390 |
+
frames_to_save.append(pointmap.shape[0] - 1)
|
391 |
+
|
392 |
+
# Sort the frames to ensure they're in order
|
393 |
+
frames_to_save = sorted(set(frames_to_save))
|
394 |
+
|
395 |
+
for frame_idx in frames_to_save:
|
396 |
+
if frame_idx >= pointmap.shape[0]:
|
397 |
+
continue
|
398 |
+
|
399 |
+
predictions = {
|
400 |
+
"world_points": pointmap[frame_idx : frame_idx + 1],
|
401 |
+
"images": rgb[frame_idx : frame_idx + 1],
|
402 |
+
"depths": 1 / np.clip(disparity[frame_idx : frame_idx + 1], 1e-8, 1e8),
|
403 |
+
"camera_poses": poses[frame_idx : frame_idx + 1],
|
404 |
+
}
|
405 |
+
|
406 |
+
glb_path = os.path.join(
|
407 |
+
output_dir, f"{base_filename}_pointcloud_frame_{frame_idx}.glb"
|
408 |
+
)
|
409 |
+
|
410 |
+
scene_3d = predictions_to_glb(
|
411 |
+
predictions,
|
412 |
+
filter_by_frames="all",
|
413 |
+
show_cam=True,
|
414 |
+
max_depth=max_depth,
|
415 |
+
rtol=rtol,
|
416 |
+
frame_rel_idx=float(frame_idx) / pointmap.shape[0],
|
417 |
+
)
|
418 |
+
scene_3d.export(glb_path)
|
419 |
+
glb_paths.append(glb_path)
|
420 |
+
|
421 |
+
paths["pointcloud_glbs"] = glb_paths
|
422 |
+
|
423 |
+
return paths
|
424 |
+
|
425 |
+
|
426 |
+
def process_reconstruction(
|
427 |
+
video_file,
|
428 |
+
height,
|
429 |
+
width,
|
430 |
+
num_frames,
|
431 |
+
num_inference_steps,
|
432 |
+
guidance_scale,
|
433 |
+
sliding_window_stride,
|
434 |
+
fps,
|
435 |
+
smooth_camera,
|
436 |
+
align_pointmaps,
|
437 |
+
max_depth,
|
438 |
+
rtol,
|
439 |
+
pointcloud_save_frame_interval,
|
440 |
+
seed,
|
441 |
+
progress=gr.Progress(),
|
442 |
+
):
|
443 |
+
"""
|
444 |
+
Process reconstruction task.
|
445 |
+
"""
|
446 |
+
try:
|
447 |
+
gc.collect()
|
448 |
+
torch.cuda.empty_cache()
|
449 |
+
|
450 |
+
# Set random seed
|
451 |
+
seed_all(seed)
|
452 |
+
|
453 |
+
# Build the pipeline
|
454 |
+
pipeline = build_pipeline()
|
455 |
+
|
456 |
+
progress(0.1, "Loading video")
|
457 |
+
# Check if video_file is a string or a file object
|
458 |
+
if isinstance(video_file, str):
|
459 |
+
video_path = video_file
|
460 |
+
else:
|
461 |
+
video_path = video_file.name
|
462 |
+
|
463 |
+
video = iio.imread(video_path).astype(np.float32) / 255.0
|
464 |
+
|
465 |
+
# Setup arguments
|
466 |
+
args = {
|
467 |
+
"height": height,
|
468 |
+
"width": width,
|
469 |
+
"num_frames": num_frames,
|
470 |
+
"sliding_window_stride": sliding_window_stride,
|
471 |
+
"smooth_camera": smooth_camera,
|
472 |
+
"smooth_method": "kalman" if smooth_camera else "none",
|
473 |
+
"align_pointmaps": align_pointmaps,
|
474 |
+
"max_depth": max_depth,
|
475 |
+
"rtol": rtol,
|
476 |
+
"pointcloud_save_frame_interval": pointcloud_save_frame_interval,
|
477 |
+
}
|
478 |
+
|
479 |
+
# Process in sliding windows
|
480 |
+
window_results = []
|
481 |
+
window_indices = get_window_starts(
|
482 |
+
len(video), num_frames, sliding_window_stride
|
483 |
+
)
|
484 |
+
|
485 |
+
progress(0.2, f"Processing video in {len(window_indices)} windows")
|
486 |
+
|
487 |
+
for i, start_idx in enumerate(window_indices):
|
488 |
+
progress_val = 0.2 + (0.6 * (i / len(window_indices)))
|
489 |
+
progress(progress_val, f"Processing window {i+1}/{len(window_indices)}")
|
490 |
+
|
491 |
+
output = pipeline(
|
492 |
+
task="reconstruction",
|
493 |
+
image=None,
|
494 |
+
goal=None,
|
495 |
+
video=video[start_idx : start_idx + num_frames],
|
496 |
+
raymap=None,
|
497 |
+
height=height,
|
498 |
+
width=width,
|
499 |
+
num_frames=num_frames,
|
500 |
+
fps=fps,
|
501 |
+
num_inference_steps=num_inference_steps,
|
502 |
+
guidance_scale=guidance_scale,
|
503 |
+
use_dynamic_cfg=False,
|
504 |
+
generator=torch.Generator(device=device).manual_seed(seed),
|
505 |
+
)
|
506 |
+
window_results.append(output)
|
507 |
+
|
508 |
+
progress(0.8, "Merging results from all windows")
|
509 |
+
# Merge window results
|
510 |
+
(
|
511 |
+
merged_rgb,
|
512 |
+
merged_disparity,
|
513 |
+
merged_poses,
|
514 |
+
pointmaps,
|
515 |
+
) = blend_and_merge_window_results(window_results, window_indices, args)
|
516 |
+
|
517 |
+
progress(0.9, "Saving output files")
|
518 |
+
# Save output files
|
519 |
+
output_dir = "outputs"
|
520 |
+
os.makedirs(output_dir, exist_ok=True)
|
521 |
+
output_paths = save_output_files(
|
522 |
+
rgb=merged_rgb,
|
523 |
+
disparity=merged_disparity,
|
524 |
+
poses=merged_poses,
|
525 |
+
pointmap=pointmaps,
|
526 |
+
task="reconstruction",
|
527 |
+
output_dir=output_dir,
|
528 |
+
fps=12,
|
529 |
+
**args,
|
530 |
+
)
|
531 |
+
|
532 |
+
progress(1.0, "Done!")
|
533 |
+
|
534 |
+
# Return paths for displaying
|
535 |
+
return (
|
536 |
+
output_paths["rgb"],
|
537 |
+
output_paths["disparity"],
|
538 |
+
output_paths.get("pointcloud_glbs", []),
|
539 |
+
)
|
540 |
+
|
541 |
+
except Exception:
|
542 |
+
import traceback
|
543 |
+
|
544 |
+
traceback.print_exc()
|
545 |
+
return None, None, []
|
546 |
+
|
547 |
+
|
548 |
+
def process_prediction(
|
549 |
+
image_file,
|
550 |
+
height,
|
551 |
+
width,
|
552 |
+
num_frames,
|
553 |
+
num_inference_steps,
|
554 |
+
guidance_scale,
|
555 |
+
use_dynamic_cfg,
|
556 |
+
raymap_option,
|
557 |
+
post_reconstruction,
|
558 |
+
fps,
|
559 |
+
smooth_camera,
|
560 |
+
align_pointmaps,
|
561 |
+
max_depth,
|
562 |
+
rtol,
|
563 |
+
pointcloud_save_frame_interval,
|
564 |
+
seed,
|
565 |
+
progress=gr.Progress(),
|
566 |
+
):
|
567 |
+
"""
|
568 |
+
Process prediction task.
|
569 |
+
"""
|
570 |
+
try:
|
571 |
+
gc.collect()
|
572 |
+
torch.cuda.empty_cache()
|
573 |
+
|
574 |
+
# Set random seed
|
575 |
+
seed_all(seed)
|
576 |
+
|
577 |
+
# Build the pipeline
|
578 |
+
pipeline = build_pipeline()
|
579 |
+
|
580 |
+
progress(0.1, "Loading image")
|
581 |
+
# Check if image_file is a string or a file object
|
582 |
+
if isinstance(image_file, str):
|
583 |
+
image_path = image_file
|
584 |
+
else:
|
585 |
+
image_path = image_file.name
|
586 |
+
|
587 |
+
image = PIL.Image.open(image_path)
|
588 |
+
|
589 |
+
progress(0.2, "Running prediction")
|
590 |
+
# Run prediction
|
591 |
+
output = pipeline(
|
592 |
+
task="prediction",
|
593 |
+
image=image,
|
594 |
+
video=None,
|
595 |
+
goal=None,
|
596 |
+
raymap=np.load(f"assets/example_raymaps/raymap_{raymap_option}.npy"),
|
597 |
+
height=height,
|
598 |
+
width=width,
|
599 |
+
num_frames=num_frames,
|
600 |
+
fps=fps,
|
601 |
+
num_inference_steps=num_inference_steps,
|
602 |
+
guidance_scale=guidance_scale,
|
603 |
+
use_dynamic_cfg=use_dynamic_cfg,
|
604 |
+
generator=torch.Generator(device=device).manual_seed(seed),
|
605 |
+
return_dict=True,
|
606 |
+
)
|
607 |
+
|
608 |
+
# Show RGB output immediately
|
609 |
+
rgb_output = output.rgb
|
610 |
+
|
611 |
+
# Setup arguments for saving
|
612 |
+
args = {
|
613 |
+
"height": height,
|
614 |
+
"width": width,
|
615 |
+
"smooth_camera": smooth_camera,
|
616 |
+
"smooth_method": "kalman" if smooth_camera else "none",
|
617 |
+
"align_pointmaps": align_pointmaps,
|
618 |
+
"max_depth": max_depth,
|
619 |
+
"rtol": rtol,
|
620 |
+
"pointcloud_save_frame_interval": pointcloud_save_frame_interval,
|
621 |
+
}
|
622 |
+
|
623 |
+
if post_reconstruction:
|
624 |
+
progress(0.5, "Running post-reconstruction for better quality")
|
625 |
+
recon_output = pipeline(
|
626 |
+
task="reconstruction",
|
627 |
+
video=output.rgb,
|
628 |
+
height=height,
|
629 |
+
width=width,
|
630 |
+
num_frames=num_frames,
|
631 |
+
fps=fps,
|
632 |
+
num_inference_steps=4,
|
633 |
+
guidance_scale=1.0,
|
634 |
+
use_dynamic_cfg=False,
|
635 |
+
generator=torch.Generator(device=device).manual_seed(seed),
|
636 |
+
)
|
637 |
+
|
638 |
+
disparity = recon_output.disparity
|
639 |
+
raymap = recon_output.raymap
|
640 |
+
else:
|
641 |
+
disparity = output.disparity
|
642 |
+
raymap = output.raymap
|
643 |
+
|
644 |
+
progress(0.8, "Saving output files")
|
645 |
+
# Save output files
|
646 |
+
output_dir = "outputs"
|
647 |
+
os.makedirs(output_dir, exist_ok=True)
|
648 |
+
output_paths = save_output_files(
|
649 |
+
rgb=rgb_output,
|
650 |
+
disparity=disparity,
|
651 |
+
raymap=raymap,
|
652 |
+
task="prediction",
|
653 |
+
output_dir=output_dir,
|
654 |
+
fps=12,
|
655 |
+
**args,
|
656 |
+
)
|
657 |
+
|
658 |
+
progress(1.0, "Done!")
|
659 |
+
|
660 |
+
# Return paths for displaying
|
661 |
+
return (
|
662 |
+
output_paths["rgb"],
|
663 |
+
output_paths["disparity"],
|
664 |
+
output_paths.get("pointcloud_glbs", []),
|
665 |
+
)
|
666 |
+
|
667 |
+
except Exception:
|
668 |
+
import traceback
|
669 |
+
|
670 |
+
traceback.print_exc()
|
671 |
+
return None, None, []
|
672 |
+
|
673 |
+
|
674 |
+
def process_planning(
|
675 |
+
image_file,
|
676 |
+
goal_file,
|
677 |
+
height,
|
678 |
+
width,
|
679 |
+
num_frames,
|
680 |
+
num_inference_steps,
|
681 |
+
guidance_scale,
|
682 |
+
use_dynamic_cfg,
|
683 |
+
post_reconstruction,
|
684 |
+
fps,
|
685 |
+
smooth_camera,
|
686 |
+
align_pointmaps,
|
687 |
+
max_depth,
|
688 |
+
rtol,
|
689 |
+
pointcloud_save_frame_interval,
|
690 |
+
seed,
|
691 |
+
progress=gr.Progress(),
|
692 |
+
):
|
693 |
+
"""
|
694 |
+
Process planning task.
|
695 |
+
"""
|
696 |
+
try:
|
697 |
+
gc.collect()
|
698 |
+
torch.cuda.empty_cache()
|
699 |
+
|
700 |
+
# Set random seed
|
701 |
+
seed_all(seed)
|
702 |
+
|
703 |
+
# Build the pipeline
|
704 |
+
pipeline = build_pipeline()
|
705 |
+
|
706 |
+
progress(0.1, "Loading images")
|
707 |
+
# Check if image_file and goal_file are strings or file objects
|
708 |
+
if isinstance(image_file, str):
|
709 |
+
image_path = image_file
|
710 |
+
else:
|
711 |
+
image_path = image_file.name
|
712 |
+
|
713 |
+
if isinstance(goal_file, str):
|
714 |
+
goal_path = goal_file
|
715 |
+
else:
|
716 |
+
goal_path = goal_file.name
|
717 |
+
|
718 |
+
image = PIL.Image.open(image_path)
|
719 |
+
goal = PIL.Image.open(goal_path)
|
720 |
+
|
721 |
+
progress(0.2, "Running planning")
|
722 |
+
# Run planning
|
723 |
+
output = pipeline(
|
724 |
+
task="planning",
|
725 |
+
image=image,
|
726 |
+
video=None,
|
727 |
+
goal=goal,
|
728 |
+
raymap=None,
|
729 |
+
height=height,
|
730 |
+
width=width,
|
731 |
+
num_frames=num_frames,
|
732 |
+
fps=fps,
|
733 |
+
num_inference_steps=num_inference_steps,
|
734 |
+
guidance_scale=guidance_scale,
|
735 |
+
use_dynamic_cfg=use_dynamic_cfg,
|
736 |
+
generator=torch.Generator(device=device).manual_seed(seed),
|
737 |
+
return_dict=True,
|
738 |
+
)
|
739 |
+
|
740 |
+
# Show RGB output immediately
|
741 |
+
rgb_output = output.rgb
|
742 |
+
|
743 |
+
# Setup arguments for saving
|
744 |
+
args = {
|
745 |
+
"height": height,
|
746 |
+
"width": width,
|
747 |
+
"smooth_camera": smooth_camera,
|
748 |
+
"smooth_method": "kalman" if smooth_camera else "none",
|
749 |
+
"align_pointmaps": align_pointmaps,
|
750 |
+
"max_depth": max_depth,
|
751 |
+
"rtol": rtol,
|
752 |
+
"pointcloud_save_frame_interval": pointcloud_save_frame_interval,
|
753 |
+
}
|
754 |
+
|
755 |
+
if post_reconstruction:
|
756 |
+
progress(0.5, "Running post-reconstruction for better quality")
|
757 |
+
recon_output = pipeline(
|
758 |
+
task="reconstruction",
|
759 |
+
video=output.rgb,
|
760 |
+
height=height,
|
761 |
+
width=width,
|
762 |
+
num_frames=num_frames,
|
763 |
+
fps=12,
|
764 |
+
num_inference_steps=4,
|
765 |
+
guidance_scale=1.0,
|
766 |
+
use_dynamic_cfg=False,
|
767 |
+
generator=torch.Generator(device=device).manual_seed(seed),
|
768 |
+
)
|
769 |
+
|
770 |
+
disparity = recon_output.disparity
|
771 |
+
raymap = recon_output.raymap
|
772 |
+
else:
|
773 |
+
disparity = output.disparity
|
774 |
+
raymap = output.raymap
|
775 |
+
|
776 |
+
progress(0.8, "Saving output files")
|
777 |
+
# Save output files
|
778 |
+
output_dir = "outputs"
|
779 |
+
os.makedirs(output_dir, exist_ok=True)
|
780 |
+
output_paths = save_output_files(
|
781 |
+
rgb=rgb_output,
|
782 |
+
disparity=disparity,
|
783 |
+
raymap=raymap,
|
784 |
+
task="planning",
|
785 |
+
output_dir=output_dir,
|
786 |
+
fps=fps,
|
787 |
+
**args,
|
788 |
+
)
|
789 |
+
|
790 |
+
progress(1.0, "Done!")
|
791 |
+
|
792 |
+
# Return paths for displaying
|
793 |
+
return (
|
794 |
+
output_paths["rgb"],
|
795 |
+
output_paths["disparity"],
|
796 |
+
output_paths.get("pointcloud_glbs", []),
|
797 |
+
)
|
798 |
+
|
799 |
+
except Exception:
|
800 |
+
import traceback
|
801 |
+
|
802 |
+
traceback.print_exc()
|
803 |
+
return None, None, []
|
804 |
+
|
805 |
+
|
806 |
+
def update_task_ui(task):
|
807 |
+
"""Update UI elements based on selected task."""
|
808 |
+
if task == "reconstruction":
|
809 |
+
return (
|
810 |
+
gr.update(visible=True), # video_input
|
811 |
+
gr.update(visible=False), # image_input
|
812 |
+
gr.update(visible=False), # goal_input
|
813 |
+
gr.update(visible=False), # image_preview
|
814 |
+
gr.update(visible=False), # goal_preview
|
815 |
+
gr.update(value=4), # num_inference_steps
|
816 |
+
gr.update(visible=True), # sliding_window_stride
|
817 |
+
gr.update(visible=False), # use_dynamic_cfg
|
818 |
+
gr.update(visible=False), # raymap_option
|
819 |
+
gr.update(visible=False), # post_reconstruction
|
820 |
+
gr.update(value=1.0), # guidance_scale
|
821 |
+
)
|
822 |
+
elif task == "prediction":
|
823 |
+
return (
|
824 |
+
gr.update(visible=False), # video_input
|
825 |
+
gr.update(visible=True), # image_input
|
826 |
+
gr.update(visible=False), # goal_input
|
827 |
+
gr.update(visible=True), # image_preview
|
828 |
+
gr.update(visible=False), # goal_preview
|
829 |
+
gr.update(value=50), # num_inference_steps
|
830 |
+
gr.update(visible=False), # sliding_window_stride
|
831 |
+
gr.update(visible=True), # use_dynamic_cfg
|
832 |
+
gr.update(visible=True), # raymap_option
|
833 |
+
gr.update(visible=True), # post_reconstruction
|
834 |
+
gr.update(value=3.0), # guidance_scale
|
835 |
+
)
|
836 |
+
elif task == "planning":
|
837 |
+
return (
|
838 |
+
gr.update(visible=False), # video_input
|
839 |
+
gr.update(visible=True), # image_input
|
840 |
+
gr.update(visible=True), # goal_input
|
841 |
+
gr.update(visible=True), # image_preview
|
842 |
+
gr.update(visible=True), # goal_preview
|
843 |
+
gr.update(value=50), # num_inference_steps
|
844 |
+
gr.update(visible=False), # sliding_window_stride
|
845 |
+
gr.update(visible=True), # use_dynamic_cfg
|
846 |
+
gr.update(visible=False), # raymap_option
|
847 |
+
gr.update(visible=True), # post_reconstruction
|
848 |
+
gr.update(value=3.0), # guidance_scale
|
849 |
+
)
|
850 |
+
|
851 |
+
|
852 |
+
def update_image_preview(image_file):
|
853 |
+
"""Update the image preview."""
|
854 |
+
if image_file:
|
855 |
+
return image_file.name
|
856 |
+
return None
|
857 |
+
|
858 |
+
|
859 |
+
def update_goal_preview(goal_file):
|
860 |
+
"""Update the goal preview."""
|
861 |
+
if goal_file:
|
862 |
+
return goal_file.name
|
863 |
+
return None
|
864 |
+
|
865 |
+
|
866 |
+
def get_download_link(selected_frame, all_paths):
|
867 |
+
"""Update the download button with the selected file path."""
|
868 |
+
if not selected_frame or not all_paths:
|
869 |
+
return gr.update(visible=False, value=None)
|
870 |
+
|
871 |
+
frame_num = int(re.search(r"Frame (\d+)", selected_frame).group(1))
|
872 |
+
|
873 |
+
for path in all_paths:
|
874 |
+
if f"frame_{frame_num}" in path:
|
875 |
+
# Make sure the file exists before setting it
|
876 |
+
if os.path.exists(path):
|
877 |
+
return gr.update(visible=True, value=path, interactive=True)
|
878 |
+
|
879 |
+
return gr.update(visible=False, value=None)
|
880 |
+
|
881 |
+
|
882 |
+
# Theme setup
|
883 |
+
theme = gr.themes.Default(
|
884 |
+
primary_hue="blue",
|
885 |
+
secondary_hue="cyan",
|
886 |
+
)
|
887 |
+
|
888 |
+
with gr.Blocks(
|
889 |
+
theme=theme,
|
890 |
+
css="""
|
891 |
+
.output-column {
|
892 |
+
min-height: 400px;
|
893 |
+
}
|
894 |
+
.warning {
|
895 |
+
color: #ff9800;
|
896 |
+
font-weight: bold;
|
897 |
+
}
|
898 |
+
.highlight {
|
899 |
+
background-color: rgba(0, 123, 255, 0.1);
|
900 |
+
padding: 10px;
|
901 |
+
border-radius: 8px;
|
902 |
+
border-left: 5px solid #007bff;
|
903 |
+
margin: 10px 0;
|
904 |
+
}
|
905 |
+
.task-header {
|
906 |
+
margin-top: 10px;
|
907 |
+
margin-bottom: 15px;
|
908 |
+
font-size: 1.2em;
|
909 |
+
font-weight: bold;
|
910 |
+
color: #007bff;
|
911 |
+
}
|
912 |
+
.flex-display {
|
913 |
+
display: flex;
|
914 |
+
flex-wrap: wrap;
|
915 |
+
gap: 10px;
|
916 |
+
}
|
917 |
+
.output-subtitle {
|
918 |
+
font-size: 1.1em;
|
919 |
+
margin-top: 5px;
|
920 |
+
margin-bottom: 5px;
|
921 |
+
color: #505050;
|
922 |
+
}
|
923 |
+
.input-section, .params-section, .advanced-section {
|
924 |
+
border: 1px solid #ddd;
|
925 |
+
padding: 15px;
|
926 |
+
border-radius: 8px;
|
927 |
+
margin-bottom: 15px;
|
928 |
+
}
|
929 |
+
.logo-container {
|
930 |
+
display: flex;
|
931 |
+
justify-content: center;
|
932 |
+
margin-bottom: 20px;
|
933 |
+
}
|
934 |
+
.logo-image {
|
935 |
+
max-width: 300px;
|
936 |
+
height: auto;
|
937 |
+
}
|
938 |
+
""",
|
939 |
+
) as demo:
|
940 |
+
with gr.Row(elem_classes=["logo-container"]):
|
941 |
+
gr.Image("assets/logo.png", show_label=False, elem_classes=["logo-image"])
|
942 |
+
|
943 |
+
gr.Markdown(
|
944 |
+
"""
|
945 |
+
# Aether: Geometric-Aware Unified World Modeling
|
946 |
+
|
947 |
+
Aether addresses a fundamental challenge in AI: integrating geometric reconstruction with
|
948 |
+
generative modeling for human-like spatial reasoning. Our framework unifies three core capabilities:
|
949 |
+
|
950 |
+
1. **4D dynamic reconstruction** - Reconstruct dynamic point clouds from videos by estimating depths and camera poses.
|
951 |
+
2. **Action-Conditioned Video Prediction** - Predict future frames based on initial observation images, with optional conditions of camera trajectory actions.
|
952 |
+
3. **Goal-Conditioned Visual Planning** - Generate planning paths from pairs of observation and goal images.
|
953 |
+
|
954 |
+
Trained entirely on synthetic data, Aether achieves strong zero-shot generalization to real-world scenarios.
|
955 |
+
"""
|
956 |
+
)
|
957 |
+
|
958 |
+
with gr.Row():
|
959 |
+
with gr.Column(scale=1):
|
960 |
+
task = gr.Radio(
|
961 |
+
["reconstruction", "prediction", "planning"],
|
962 |
+
label="Select Task",
|
963 |
+
value="reconstruction",
|
964 |
+
info="Choose the task you want to perform",
|
965 |
+
)
|
966 |
+
|
967 |
+
with gr.Group(elem_classes=["input-section"]):
|
968 |
+
# Input section - changes based on task
|
969 |
+
gr.Markdown("## 📥 Input", elem_classes=["task-header"])
|
970 |
+
|
971 |
+
# Task-specific inputs
|
972 |
+
video_input = gr.Video(
|
973 |
+
label="Upload Input Video",
|
974 |
+
sources=["upload"],
|
975 |
+
visible=True,
|
976 |
+
interactive=True,
|
977 |
+
elem_id="video_input",
|
978 |
+
)
|
979 |
+
|
980 |
+
image_input = gr.File(
|
981 |
+
label="Upload Start Image",
|
982 |
+
file_count="single",
|
983 |
+
file_types=["image"],
|
984 |
+
visible=False,
|
985 |
+
interactive=True,
|
986 |
+
elem_id="image_input",
|
987 |
+
)
|
988 |
+
|
989 |
+
goal_input = gr.File(
|
990 |
+
label="Upload Goal Image",
|
991 |
+
file_count="single",
|
992 |
+
file_types=["image"],
|
993 |
+
visible=False,
|
994 |
+
interactive=True,
|
995 |
+
elem_id="goal_input",
|
996 |
+
)
|
997 |
+
|
998 |
+
with gr.Row(visible=False) as preview_row:
|
999 |
+
image_preview = gr.Image(
|
1000 |
+
label="Start Image Preview",
|
1001 |
+
elem_id="image_preview",
|
1002 |
+
visible=False,
|
1003 |
+
)
|
1004 |
+
goal_preview = gr.Image(
|
1005 |
+
label="Goal Image Preview",
|
1006 |
+
elem_id="goal_preview",
|
1007 |
+
visible=False,
|
1008 |
+
)
|
1009 |
+
|
1010 |
+
with gr.Group(elem_classes=["params-section"]):
|
1011 |
+
gr.Markdown("## ⚙️ Parameters", elem_classes=["task-header"])
|
1012 |
+
|
1013 |
+
with gr.Row():
|
1014 |
+
with gr.Column(scale=1):
|
1015 |
+
height = gr.Dropdown(
|
1016 |
+
choices=[480],
|
1017 |
+
value=480,
|
1018 |
+
label="Height",
|
1019 |
+
info="Height of the output video",
|
1020 |
+
)
|
1021 |
+
|
1022 |
+
with gr.Column(scale=1):
|
1023 |
+
width = gr.Dropdown(
|
1024 |
+
choices=[720],
|
1025 |
+
value=720,
|
1026 |
+
label="Width",
|
1027 |
+
info="Width of the output video",
|
1028 |
+
)
|
1029 |
+
|
1030 |
+
with gr.Row():
|
1031 |
+
with gr.Column(scale=1):
|
1032 |
+
num_frames = gr.Dropdown(
|
1033 |
+
choices=[17, 25, 33, 41],
|
1034 |
+
value=41,
|
1035 |
+
label="Number of Frames",
|
1036 |
+
info="Number of frames to predict",
|
1037 |
+
)
|
1038 |
+
|
1039 |
+
with gr.Column(scale=1):
|
1040 |
+
fps = gr.Dropdown(
|
1041 |
+
choices=[8, 10, 12, 15, 24],
|
1042 |
+
value=12,
|
1043 |
+
label="FPS",
|
1044 |
+
info="Frames per second",
|
1045 |
+
)
|
1046 |
+
|
1047 |
+
with gr.Row():
|
1048 |
+
with gr.Column(scale=1):
|
1049 |
+
num_inference_steps = gr.Slider(
|
1050 |
+
minimum=1,
|
1051 |
+
maximum=60,
|
1052 |
+
value=4,
|
1053 |
+
step=1,
|
1054 |
+
label="Inference Steps",
|
1055 |
+
info="Number of inference step",
|
1056 |
+
)
|
1057 |
+
|
1058 |
+
sliding_window_stride = gr.Slider(
|
1059 |
+
minimum=1,
|
1060 |
+
maximum=40,
|
1061 |
+
value=24,
|
1062 |
+
step=1,
|
1063 |
+
label="Sliding Window Stride",
|
1064 |
+
info="Sliding window stride (window size equals to num_frames). Only used for 'reconstruction' task",
|
1065 |
+
visible=True,
|
1066 |
+
)
|
1067 |
+
|
1068 |
+
use_dynamic_cfg = gr.Checkbox(
|
1069 |
+
label="Use Dynamic CFG",
|
1070 |
+
value=True,
|
1071 |
+
info="Use dynamic CFG",
|
1072 |
+
visible=False,
|
1073 |
+
)
|
1074 |
+
|
1075 |
+
raymap_option = gr.Radio(
|
1076 |
+
choices=["backward", "forward_right", "left_forward", "right"],
|
1077 |
+
label="Camera Movement Direction",
|
1078 |
+
value="forward_right",
|
1079 |
+
info="Direction of camera action. We offer 4 pre-defined actions for you to choose from.",
|
1080 |
+
visible=False,
|
1081 |
+
)
|
1082 |
+
|
1083 |
+
post_reconstruction = gr.Checkbox(
|
1084 |
+
label="Post-Reconstruction",
|
1085 |
+
value=True,
|
1086 |
+
info="Run reconstruction after prediction for better quality",
|
1087 |
+
visible=False,
|
1088 |
+
)
|
1089 |
+
|
1090 |
+
with gr.Accordion(
|
1091 |
+
"Advanced Options", open=False, visible=True
|
1092 |
+
) as advanced_options:
|
1093 |
+
with gr.Group(elem_classes=["advanced-section"]):
|
1094 |
+
with gr.Row():
|
1095 |
+
with gr.Column(scale=1):
|
1096 |
+
guidance_scale = gr.Slider(
|
1097 |
+
minimum=1.0,
|
1098 |
+
maximum=10.0,
|
1099 |
+
value=1.0,
|
1100 |
+
step=0.1,
|
1101 |
+
label="Guidance Scale",
|
1102 |
+
info="Guidance scale (only for prediction / planning)",
|
1103 |
+
)
|
1104 |
+
|
1105 |
+
with gr.Row():
|
1106 |
+
with gr.Column(scale=1):
|
1107 |
+
seed = gr.Number(
|
1108 |
+
value=42,
|
1109 |
+
label="Random Seed",
|
1110 |
+
info="Set a seed for reproducible results",
|
1111 |
+
precision=0,
|
1112 |
+
minimum=0,
|
1113 |
+
maximum=2147483647,
|
1114 |
+
)
|
1115 |
+
|
1116 |
+
with gr.Row():
|
1117 |
+
with gr.Column(scale=1):
|
1118 |
+
smooth_camera = gr.Checkbox(
|
1119 |
+
label="Smooth Camera",
|
1120 |
+
value=True,
|
1121 |
+
info="Apply smoothing to camera trajectory",
|
1122 |
+
)
|
1123 |
+
|
1124 |
+
with gr.Column(scale=1):
|
1125 |
+
align_pointmaps = gr.Checkbox(
|
1126 |
+
label="Align Point Maps",
|
1127 |
+
value=False,
|
1128 |
+
info="Align point maps across frames",
|
1129 |
+
)
|
1130 |
+
|
1131 |
+
with gr.Row():
|
1132 |
+
with gr.Column(scale=1):
|
1133 |
+
max_depth = gr.Slider(
|
1134 |
+
minimum=10,
|
1135 |
+
maximum=200,
|
1136 |
+
value=60,
|
1137 |
+
step=10,
|
1138 |
+
label="Max Depth",
|
1139 |
+
info="Maximum depth for point cloud (higher = more distant points)",
|
1140 |
+
)
|
1141 |
+
|
1142 |
+
with gr.Column(scale=1):
|
1143 |
+
rtol = gr.Slider(
|
1144 |
+
minimum=0.01,
|
1145 |
+
maximum=2.0,
|
1146 |
+
value=0.03,
|
1147 |
+
step=0.01,
|
1148 |
+
label="Relative Tolerance",
|
1149 |
+
info="Used for depth edge detection. Lower = remove more edges",
|
1150 |
+
)
|
1151 |
+
|
1152 |
+
pointcloud_save_frame_interval = gr.Slider(
|
1153 |
+
minimum=1,
|
1154 |
+
maximum=20,
|
1155 |
+
value=10,
|
1156 |
+
step=1,
|
1157 |
+
label="Point Cloud Frame Interval",
|
1158 |
+
info="Save point cloud every N frames (higher = fewer files but less complete representation)",
|
1159 |
+
)
|
1160 |
+
|
1161 |
+
run_button = gr.Button("Run Aether", variant="primary")
|
1162 |
+
|
1163 |
+
with gr.Column(scale=1, elem_classes=["output-column"]):
|
1164 |
+
with gr.Group():
|
1165 |
+
gr.Markdown("## 📤 Output", elem_classes=["task-header"])
|
1166 |
+
|
1167 |
+
gr.Markdown("### RGB Video", elem_classes=["output-subtitle"])
|
1168 |
+
rgb_output = gr.Video(
|
1169 |
+
label="RGB Output", interactive=False, elem_id="rgb_output"
|
1170 |
+
)
|
1171 |
+
|
1172 |
+
gr.Markdown("### Depth Video", elem_classes=["output-subtitle"])
|
1173 |
+
depth_output = gr.Video(
|
1174 |
+
label="Depth Output", interactive=False, elem_id="depth_output"
|
1175 |
+
)
|
1176 |
+
|
1177 |
+
gr.Markdown("### Point Clouds", elem_classes=["output-subtitle"])
|
1178 |
+
with gr.Row(elem_classes=["flex-display"]):
|
1179 |
+
pointcloud_frames = gr.Dropdown(
|
1180 |
+
label="Select Frame",
|
1181 |
+
choices=[],
|
1182 |
+
value=None,
|
1183 |
+
interactive=True,
|
1184 |
+
elem_id="pointcloud_frames",
|
1185 |
+
)
|
1186 |
+
pointcloud_download = gr.DownloadButton(
|
1187 |
+
label="Download Point Cloud",
|
1188 |
+
visible=False,
|
1189 |
+
elem_id="pointcloud_download",
|
1190 |
+
)
|
1191 |
+
|
1192 |
+
model_output = gr.Model3D(
|
1193 |
+
label="Point Cloud Viewer", interactive=True, elem_id="model_output"
|
1194 |
+
)
|
1195 |
+
|
1196 |
+
with gr.Tab("About Results"):
|
1197 |
+
gr.Markdown(
|
1198 |
+
"""
|
1199 |
+
### Understanding the Outputs
|
1200 |
+
|
1201 |
+
- **RGB Video**: Shows the predicted or reconstructed RGB frames
|
1202 |
+
- **Depth Video**: Visualizes the disparity maps in color (closer = red, further = blue)
|
1203 |
+
- **Point Clouds**: Interactive 3D point cloud with camera positions shown as colored pyramids
|
1204 |
+
|
1205 |
+
<p class="warning">Note: 3D point clouds take a long time to visualize, and we show the keyframes only.
|
1206 |
+
You can control the keyframe interval by modifying the `pointcloud_save_frame_interval`.</p>
|
1207 |
+
"""
|
1208 |
+
)
|
1209 |
+
|
1210 |
+
# Event handlers
|
1211 |
+
task.change(
|
1212 |
+
fn=update_task_ui,
|
1213 |
+
inputs=[task],
|
1214 |
+
outputs=[
|
1215 |
+
video_input,
|
1216 |
+
image_input,
|
1217 |
+
goal_input,
|
1218 |
+
image_preview,
|
1219 |
+
goal_preview,
|
1220 |
+
num_inference_steps,
|
1221 |
+
sliding_window_stride,
|
1222 |
+
use_dynamic_cfg,
|
1223 |
+
raymap_option,
|
1224 |
+
post_reconstruction,
|
1225 |
+
guidance_scale,
|
1226 |
+
],
|
1227 |
+
)
|
1228 |
+
|
1229 |
+
image_input.change(
|
1230 |
+
fn=update_image_preview, inputs=[image_input], outputs=[image_preview]
|
1231 |
+
).then(fn=lambda: gr.update(visible=True), inputs=[], outputs=[preview_row])
|
1232 |
+
|
1233 |
+
goal_input.change(
|
1234 |
+
fn=update_goal_preview, inputs=[goal_input], outputs=[goal_preview]
|
1235 |
+
).then(fn=lambda: gr.update(visible=True), inputs=[], outputs=[preview_row])
|
1236 |
+
|
1237 |
+
def update_pointcloud_frames(pointcloud_paths):
|
1238 |
+
"""Update the pointcloud frames dropdown with available frames."""
|
1239 |
+
if not pointcloud_paths:
|
1240 |
+
return gr.update(choices=[], value=None), None, gr.update(visible=False)
|
1241 |
+
|
1242 |
+
# Extract frame numbers from filenames
|
1243 |
+
frame_info = []
|
1244 |
+
for path in pointcloud_paths:
|
1245 |
+
filename = os.path.basename(path)
|
1246 |
+
match = re.search(r"frame_(\d+)", filename)
|
1247 |
+
if match:
|
1248 |
+
frame_num = int(match.group(1))
|
1249 |
+
frame_info.append((f"Frame {frame_num}", path))
|
1250 |
+
|
1251 |
+
# Sort by frame number
|
1252 |
+
frame_info.sort(key=lambda x: int(re.search(r"Frame (\d+)", x[0]).group(1)))
|
1253 |
+
|
1254 |
+
choices = [label for label, _ in frame_info]
|
1255 |
+
paths = [path for _, path in frame_info]
|
1256 |
+
|
1257 |
+
if not choices:
|
1258 |
+
return gr.update(choices=[], value=None), None, gr.update(visible=False)
|
1259 |
+
|
1260 |
+
# Make download button visible when we have point cloud files
|
1261 |
+
return (
|
1262 |
+
gr.update(choices=choices, value=choices[0]),
|
1263 |
+
paths[0],
|
1264 |
+
gr.update(visible=True),
|
1265 |
+
)
|
1266 |
+
|
1267 |
+
def select_pointcloud_frame(frame_label, all_paths):
|
1268 |
+
"""Select a specific pointcloud frame."""
|
1269 |
+
if not frame_label or not all_paths:
|
1270 |
+
return None
|
1271 |
+
|
1272 |
+
frame_num = int(re.search(r"Frame (\d+)", frame_label).group(1))
|
1273 |
+
|
1274 |
+
for path in all_paths:
|
1275 |
+
if f"frame_{frame_num}" in path:
|
1276 |
+
return path
|
1277 |
+
|
1278 |
+
return None
|
1279 |
+
|
1280 |
+
# Then in the run button click handler:
|
1281 |
+
def process_task(task_type, *args):
|
1282 |
+
"""Process selected task with appropriate function."""
|
1283 |
+
if task_type == "reconstruction":
|
1284 |
+
rgb_path, depth_path, pointcloud_paths = process_reconstruction(*args)
|
1285 |
+
# Update the pointcloud frames dropdown
|
1286 |
+
frame_dropdown, initial_path, download_visible = update_pointcloud_frames(
|
1287 |
+
pointcloud_paths
|
1288 |
+
)
|
1289 |
+
return (
|
1290 |
+
rgb_path,
|
1291 |
+
depth_path,
|
1292 |
+
initial_path,
|
1293 |
+
frame_dropdown,
|
1294 |
+
pointcloud_paths,
|
1295 |
+
download_visible,
|
1296 |
+
)
|
1297 |
+
elif task_type == "prediction":
|
1298 |
+
rgb_path, depth_path, pointcloud_paths = process_prediction(*args)
|
1299 |
+
frame_dropdown, initial_path, download_visible = update_pointcloud_frames(
|
1300 |
+
pointcloud_paths
|
1301 |
+
)
|
1302 |
+
return (
|
1303 |
+
rgb_path,
|
1304 |
+
depth_path,
|
1305 |
+
initial_path,
|
1306 |
+
frame_dropdown,
|
1307 |
+
pointcloud_paths,
|
1308 |
+
download_visible,
|
1309 |
+
)
|
1310 |
+
elif task_type == "planning":
|
1311 |
+
rgb_path, depth_path, pointcloud_paths = process_planning(*args)
|
1312 |
+
frame_dropdown, initial_path, download_visible = update_pointcloud_frames(
|
1313 |
+
pointcloud_paths
|
1314 |
+
)
|
1315 |
+
return (
|
1316 |
+
rgb_path,
|
1317 |
+
depth_path,
|
1318 |
+
initial_path,
|
1319 |
+
frame_dropdown,
|
1320 |
+
pointcloud_paths,
|
1321 |
+
download_visible,
|
1322 |
+
)
|
1323 |
+
return (
|
1324 |
+
None,
|
1325 |
+
None,
|
1326 |
+
None,
|
1327 |
+
gr.update(choices=[], value=None),
|
1328 |
+
[],
|
1329 |
+
gr.update(visible=False),
|
1330 |
+
)
|
1331 |
+
|
1332 |
+
# Store all pointcloud paths for later use
|
1333 |
+
all_pointcloud_paths = gr.State([])
|
1334 |
+
|
1335 |
+
run_button.click(
|
1336 |
+
fn=lambda task_type,
|
1337 |
+
video_file,
|
1338 |
+
image_file,
|
1339 |
+
goal_file,
|
1340 |
+
height,
|
1341 |
+
width,
|
1342 |
+
num_frames,
|
1343 |
+
num_inference_steps,
|
1344 |
+
guidance_scale,
|
1345 |
+
sliding_window_stride,
|
1346 |
+
use_dynamic_cfg,
|
1347 |
+
raymap_option,
|
1348 |
+
post_reconstruction,
|
1349 |
+
fps,
|
1350 |
+
smooth_camera,
|
1351 |
+
align_pointmaps,
|
1352 |
+
max_depth,
|
1353 |
+
rtol,
|
1354 |
+
pointcloud_save_frame_interval,
|
1355 |
+
seed: process_task(
|
1356 |
+
task_type,
|
1357 |
+
*(
|
1358 |
+
[
|
1359 |
+
video_file,
|
1360 |
+
height,
|
1361 |
+
width,
|
1362 |
+
num_frames,
|
1363 |
+
num_inference_steps,
|
1364 |
+
guidance_scale,
|
1365 |
+
sliding_window_stride,
|
1366 |
+
fps,
|
1367 |
+
smooth_camera,
|
1368 |
+
align_pointmaps,
|
1369 |
+
max_depth,
|
1370 |
+
rtol,
|
1371 |
+
pointcloud_save_frame_interval,
|
1372 |
+
seed,
|
1373 |
+
]
|
1374 |
+
if task_type == "reconstruction"
|
1375 |
+
else [
|
1376 |
+
image_file,
|
1377 |
+
height,
|
1378 |
+
width,
|
1379 |
+
num_frames,
|
1380 |
+
num_inference_steps,
|
1381 |
+
guidance_scale,
|
1382 |
+
use_dynamic_cfg,
|
1383 |
+
raymap_option,
|
1384 |
+
post_reconstruction,
|
1385 |
+
fps,
|
1386 |
+
smooth_camera,
|
1387 |
+
align_pointmaps,
|
1388 |
+
max_depth,
|
1389 |
+
rtol,
|
1390 |
+
pointcloud_save_frame_interval,
|
1391 |
+
seed,
|
1392 |
+
]
|
1393 |
+
if task_type == "prediction"
|
1394 |
+
else [
|
1395 |
+
image_file,
|
1396 |
+
goal_file,
|
1397 |
+
height,
|
1398 |
+
width,
|
1399 |
+
num_frames,
|
1400 |
+
num_inference_steps,
|
1401 |
+
guidance_scale,
|
1402 |
+
use_dynamic_cfg,
|
1403 |
+
post_reconstruction,
|
1404 |
+
fps,
|
1405 |
+
smooth_camera,
|
1406 |
+
align_pointmaps,
|
1407 |
+
max_depth,
|
1408 |
+
rtol,
|
1409 |
+
pointcloud_save_frame_interval,
|
1410 |
+
seed,
|
1411 |
+
]
|
1412 |
+
),
|
1413 |
+
),
|
1414 |
+
inputs=[
|
1415 |
+
task,
|
1416 |
+
video_input,
|
1417 |
+
image_input,
|
1418 |
+
goal_input,
|
1419 |
+
height,
|
1420 |
+
width,
|
1421 |
+
num_frames,
|
1422 |
+
num_inference_steps,
|
1423 |
+
guidance_scale,
|
1424 |
+
sliding_window_stride,
|
1425 |
+
use_dynamic_cfg,
|
1426 |
+
raymap_option,
|
1427 |
+
post_reconstruction,
|
1428 |
+
fps,
|
1429 |
+
smooth_camera,
|
1430 |
+
align_pointmaps,
|
1431 |
+
max_depth,
|
1432 |
+
rtol,
|
1433 |
+
pointcloud_save_frame_interval,
|
1434 |
+
seed,
|
1435 |
+
],
|
1436 |
+
outputs=[
|
1437 |
+
rgb_output,
|
1438 |
+
depth_output,
|
1439 |
+
model_output,
|
1440 |
+
pointcloud_frames,
|
1441 |
+
all_pointcloud_paths,
|
1442 |
+
pointcloud_download,
|
1443 |
+
],
|
1444 |
+
)
|
1445 |
+
|
1446 |
+
pointcloud_frames.change(
|
1447 |
+
fn=select_pointcloud_frame,
|
1448 |
+
inputs=[pointcloud_frames, all_pointcloud_paths],
|
1449 |
+
outputs=[model_output],
|
1450 |
+
).then(
|
1451 |
+
fn=get_download_link,
|
1452 |
+
inputs=[pointcloud_frames, all_pointcloud_paths],
|
1453 |
+
outputs=[pointcloud_download],
|
1454 |
+
)
|
1455 |
+
|
1456 |
+
# Example Accordion
|
1457 |
+
with gr.Accordion("Examples"):
|
1458 |
+
gr.Markdown(
|
1459 |
+
"""
|
1460 |
+
### Examples will be added soon
|
1461 |
+
Check back for example inputs for each task type.
|
1462 |
+
"""
|
1463 |
+
)
|
1464 |
+
|
1465 |
+
# Load the model at startup
|
1466 |
+
demo.load(lambda: build_pipeline(), inputs=None, outputs=None)
|
1467 |
+
|
1468 |
+
if __name__ == "__main__":
|
1469 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
1470 |
+
demo.queue(max_size=20).launch(show_error=True, share=True)
|