Spaces:
Running
on
Zero
Running
on
Zero
File size: 36,318 Bytes
19da45c 8040e22 19da45c 8040e22 19da45c 8040e22 19da45c 8040e22 19da45c 8040e22 19da45c 8040e22 19da45c 8040e22 19da45c 8040e22 19da45c 8040e22 19da45c 8040e22 19da45c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 |
import inspect
import math
from dataclasses import dataclass
from typing import Dict, List, Optional, Tuple, Union
import numpy as np
import PIL
import torch
from diffusers import (
AutoencoderKLCogVideoX,
CogVideoXDPMScheduler,
CogVideoXImageToVideoPipeline,
CogVideoXTransformer3DModel,
)
from diffusers.image_processor import PipelineImageInput
from diffusers.models.embeddings import get_1d_rotary_pos_embed
from diffusers.utils import BaseOutput
from diffusers.utils.torch_utils import randn_tensor
from einops import rearrange
from transformers import AutoTokenizer, T5EncoderModel
from aether.utils.preprocess_utils import imcrop_center
def get_3d_rotary_pos_embed(
embed_dim,
crops_coords,
grid_size,
temporal_size,
theta: int = 10000,
use_real: bool = True,
grid_type: str = "linspace",
max_size: Optional[Tuple[int, int]] = None,
device: Optional[torch.device] = None,
fps_factor: Optional[float] = 1.0,
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
"""
RoPE for video tokens with 3D structure.
Args:
embed_dim: (`int`):
The embedding dimension size, corresponding to hidden_size_head.
crops_coords (`Tuple[int]`):
The top-left and bottom-right coordinates of the crop.
grid_size (`Tuple[int]`):
The grid size of the spatial positional embedding (height, width).
temporal_size (`int`):
The size of the temporal dimension.
theta (`float`):
Scaling factor for frequency computation.
grid_type (`str`):
Whether to use "linspace" or "slice" to compute grids.
fps_factor (`float`):
The relative fps factor of the video, computed by base_fps / fps. Useful for variable fps training.
Returns:
`torch.Tensor`: positional embedding with shape `(temporal_size * grid_size[0] * grid_size[1], embed_dim/2)`.
"""
if use_real is not True:
raise ValueError(
" `use_real = False` is not currently supported for get_3d_rotary_pos_embed"
)
if grid_type == "linspace":
start, stop = crops_coords
grid_size_h, grid_size_w = grid_size
grid_h = torch.linspace(
start[0],
stop[0] * (grid_size_h - 1) / grid_size_h,
grid_size_h,
device=device,
dtype=torch.float32,
)
grid_w = torch.linspace(
start[1],
stop[1] * (grid_size_w - 1) / grid_size_w,
grid_size_w,
device=device,
dtype=torch.float32,
)
grid_t = (
torch.linspace(
0,
temporal_size * (temporal_size - 1) / temporal_size,
temporal_size,
device=device,
dtype=torch.float32,
)
* fps_factor
)
elif grid_type == "slice":
max_h, max_w = max_size
grid_size_h, grid_size_w = grid_size
grid_h = torch.arange(max_h, device=device, dtype=torch.float32)
grid_w = torch.arange(max_w, device=device, dtype=torch.float32)
grid_t = (
torch.arange(temporal_size, device=device, dtype=torch.float32) * fps_factor
)
else:
raise ValueError("Invalid value passed for `grid_type`.")
# Compute dimensions for each axis
dim_t = embed_dim // 4
dim_h = embed_dim // 8 * 3
dim_w = embed_dim // 8 * 3
# Temporal frequencies
freqs_t = get_1d_rotary_pos_embed(dim_t, grid_t, theta=theta, use_real=True)
# Spatial frequencies for height and width
freqs_h = get_1d_rotary_pos_embed(dim_h, grid_h, theta=theta, use_real=True)
freqs_w = get_1d_rotary_pos_embed(dim_w, grid_w, theta=theta, use_real=True)
# BroadCast and concatenate temporal and spaial frequencie (height and width) into a 3d tensor
def combine_time_height_width(freqs_t, freqs_h, freqs_w):
freqs_t = freqs_t[:, None, None, :].expand(
-1, grid_size_h, grid_size_w, -1
) # temporal_size, grid_size_h, grid_size_w, dim_t
freqs_h = freqs_h[None, :, None, :].expand(
temporal_size, -1, grid_size_w, -1
) # temporal_size, grid_size_h, grid_size_2, dim_h
freqs_w = freqs_w[None, None, :, :].expand(
temporal_size, grid_size_h, -1, -1
) # temporal_size, grid_size_h, grid_size_2, dim_w
freqs = torch.cat(
[freqs_t, freqs_h, freqs_w], dim=-1
) # temporal_size, grid_size_h, grid_size_w, (dim_t + dim_h + dim_w)
freqs = freqs.view(
temporal_size * grid_size_h * grid_size_w, -1
) # (temporal_size * grid_size_h * grid_size_w), (dim_t + dim_h + dim_w)
return freqs
t_cos, t_sin = freqs_t # both t_cos and t_sin has shape: temporal_size, dim_t
h_cos, h_sin = freqs_h # both h_cos and h_sin has shape: grid_size_h, dim_h
w_cos, w_sin = freqs_w # both w_cos and w_sin has shape: grid_size_w, dim_w
if grid_type == "slice":
t_cos, t_sin = t_cos[:temporal_size], t_sin[:temporal_size]
h_cos, h_sin = h_cos[:grid_size_h], h_sin[:grid_size_h]
w_cos, w_sin = w_cos[:grid_size_w], w_sin[:grid_size_w]
cos = combine_time_height_width(t_cos, h_cos, w_cos)
sin = combine_time_height_width(t_sin, h_sin, w_sin)
return cos, sin
# Similar to diffusers.pipelines.hunyuandit.pipeline_hunyuandit.get_resize_crop_region_for_grid
def get_resize_crop_region_for_grid(src, tgt_width, tgt_height):
tw = tgt_width
th = tgt_height
h, w = src
r = h / w
if r > (th / tw):
resize_height = th
resize_width = int(round(th / h * w))
else:
resize_width = tw
resize_height = int(round(tw / w * h))
crop_top = int(round((th - resize_height) / 2.0))
crop_left = int(round((tw - resize_width) / 2.0))
return (crop_top, crop_left), (crop_top + resize_height, crop_left + resize_width)
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
def retrieve_timesteps(
scheduler,
num_inference_steps: Optional[int] = None,
device: Optional[Union[str, torch.device]] = None,
timesteps: Optional[List[int]] = None,
sigmas: Optional[List[float]] = None,
**kwargs,
):
r"""
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
Args:
scheduler (`SchedulerMixin`):
The scheduler to get timesteps from.
num_inference_steps (`int`):
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
must be `None`.
device (`str` or `torch.device`, *optional*):
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
timesteps (`List[int]`, *optional*):
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
`num_inference_steps` and `sigmas` must be `None`.
sigmas (`List[float]`, *optional*):
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
`num_inference_steps` and `timesteps` must be `None`.
Returns:
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
second element is the number of inference steps.
"""
if timesteps is not None and sigmas is not None:
raise ValueError(
"Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values"
)
if timesteps is not None:
accepts_timesteps = "timesteps" in set(
inspect.signature(scheduler.set_timesteps).parameters.keys()
)
if not accepts_timesteps:
raise ValueError(
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
f" timestep schedules. Please check whether you are using the correct scheduler."
)
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
timesteps = scheduler.timesteps
num_inference_steps = len(timesteps)
elif sigmas is not None:
accept_sigmas = "sigmas" in set(
inspect.signature(scheduler.set_timesteps).parameters.keys()
)
if not accept_sigmas:
raise ValueError(
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
f" sigmas schedules. Please check whether you are using the correct scheduler."
)
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
timesteps = scheduler.timesteps
num_inference_steps = len(timesteps)
else:
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
timesteps = scheduler.timesteps
return timesteps, num_inference_steps
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
def retrieve_latents(
encoder_output: torch.Tensor,
generator: Optional[torch.Generator] = None,
sample_mode: str = "sample",
):
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
return encoder_output.latent_dist.sample(generator)
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
return encoder_output.latent_dist.mode()
elif hasattr(encoder_output, "latents"):
return encoder_output.latents
else:
raise AttributeError("Could not access latents of provided encoder_output")
@dataclass
class AetherV1PipelineOutput(BaseOutput):
rgb: np.ndarray
disparity: np.ndarray
raymap: np.ndarray
class AetherV1PipelineCogVideoX(CogVideoXImageToVideoPipeline):
_supported_tasks = ["reconstruction", "prediction", "planning"]
_default_num_inference_steps = {
"reconstruction": 4,
"prediction": 50,
"planning": 50,
}
_default_guidance_scale = {
"reconstruction": 1.0,
"prediction": 3.0,
"planning": 3.0,
}
_default_use_dynamic_cfg = {
"reconstruction": False,
"prediction": True,
"planning": True,
}
_base_fps = 12
def __init__(
self,
tokenizer: AutoTokenizer,
text_encoder: T5EncoderModel,
vae: AutoencoderKLCogVideoX,
scheduler: CogVideoXDPMScheduler,
transformer: CogVideoXTransformer3DModel,
):
super().__init__(
tokenizer=tokenizer,
text_encoder=text_encoder,
vae=vae,
scheduler=scheduler,
transformer=transformer,
)
self.empty_prompt_embeds, _ = self.encode_prompt(
prompt="",
negative_prompt=None,
do_classifier_free_guidance=False,
num_videos_per_prompt=1,
prompt_embeds=None,
)
self.empty_prompt_embeds = self.empty_prompt_embeds.to(dtype=torch.bfloat16)
def _prepare_rotary_positional_embeddings(
self,
height: int,
width: int,
num_frames: int,
device: torch.device,
fps: Optional[int] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
grid_height = height // (
self.vae_scale_factor_spatial * self.transformer.config.patch_size
)
grid_width = width // (
self.vae_scale_factor_spatial * self.transformer.config.patch_size
)
p = self.transformer.config.patch_size
p_t = self.transformer.config.patch_size_t
base_size_width = self.transformer.config.sample_width // p
base_size_height = self.transformer.config.sample_height // p
if p_t is None:
# CogVideoX 1.0
grid_crops_coords = get_resize_crop_region_for_grid(
(grid_height, grid_width), base_size_width, base_size_height
)
freqs_cos, freqs_sin = get_3d_rotary_pos_embed(
embed_dim=self.transformer.config.attention_head_dim,
crops_coords=grid_crops_coords,
grid_size=(grid_height, grid_width),
temporal_size=num_frames,
device=device,
fps_factor=self._base_fps / fps,
)
else:
# CogVideoX 1.5
base_num_frames = (num_frames + p_t - 1) // p_t
freqs_cos, freqs_sin = get_3d_rotary_pos_embed(
embed_dim=self.transformer.config.attention_head_dim,
crops_coords=None,
grid_size=(grid_height, grid_width),
temporal_size=base_num_frames,
grid_type="slice",
max_size=(base_size_height, base_size_width),
device=device,
fps_factor=self._base_fps / fps,
)
return freqs_cos, freqs_sin
def check_inputs(
self,
task,
image,
video,
goal,
raymap,
height,
width,
num_frames,
fps,
):
if task not in self._supported_tasks:
raise ValueError(f"`task` has to be one of {self._supported_tasks}.")
if image is None and video is None:
raise ValueError("`image` or `video` has to be provided.")
if image is not None and video is not None:
raise ValueError("`image` and `video` cannot both be provided.")
if image is not None:
if task == "reconstruction":
raise ValueError("`image` is not supported for `reconstruction` task.")
if (
not isinstance(image, torch.Tensor)
and not isinstance(image, np.ndarray)
and not isinstance(image, PIL.Image.Image)
):
raise ValueError(
"`image` has to be of type `torch.Tensor` or `np.ndarray` or `PIL.Image.Image` but is"
f" {type(image)}"
)
if goal is not None:
if task != "planning":
raise ValueError("`goal` is only supported for `planning` task.")
if (
not isinstance(goal, torch.Tensor)
and not isinstance(goal, np.ndarray)
and not isinstance(goal, PIL.Image.Image)
):
raise ValueError(
"`goal` has to be of type `torch.Tensor` or `np.ndarray` or `PIL.Image.Image` but is"
f" {type(goal)}"
)
if video is not None:
if task != "reconstruction":
raise ValueError("`video` is only supported for `reconstruction` task.")
if (
not isinstance(video, torch.Tensor)
and not isinstance(video, np.ndarray)
and not (
isinstance(video, list)
and all(isinstance(v, PIL.Image.Image) for v in video)
)
):
raise ValueError(
"`video` has to be of type `torch.Tensor` or `np.ndarray` or `List[PIL.Image.Image]` but is"
f" {type(video)}"
)
if height % 8 != 0 or width % 8 != 0:
raise ValueError(
f"`height` and `width` have to be divisible by 8 but are {height} and {width}."
)
if num_frames is None:
raise ValueError("`num_frames` is required.")
if num_frames not in [17, 25, 33, 41]:
raise ValueError("`num_frames` has to be one of [17, 25, 33, 41].")
if fps not in [8, 10, 12, 15, 24]:
raise ValueError("`fps` has to be one of [8, 10, 12, 15, 24].")
if (
raymap is not None
and not isinstance(raymap, torch.Tensor)
and not isinstance(raymap, np.ndarray)
):
raise ValueError(
"`raymap` has to be of type `torch.Tensor` or `np.ndarray`."
)
if raymap is not None:
if raymap.shape[-4:] != (
num_frames,
6,
height // self.vae_scale_factor_spatial,
width // self.vae_scale_factor_spatial,
):
raise ValueError(
f"`raymap` shape is not correct. "
f"Expected {num_frames, 6, height // self.vae_scale_factor_spatial, width // self.vae_scale_factor_spatial}, "
f"got {raymap.shape}."
)
def _preprocess_image(self, image, height, width):
if isinstance(image, torch.Tensor):
image = image.cpu().numpy()
if image.dtype == np.uint8:
image = image.astype(np.float32) / 255.0
if image.ndim == 3:
image = [image]
image = imcrop_center(image, height, width)
image = self.video_processor.preprocess(image, height, width)
return image
def preprocess_inputs(
self,
image,
goal,
video,
raymap,
height,
width,
num_frames,
):
if image is not None:
if isinstance(image, PIL.Image.Image):
image = self.video_processor.preprocess(
image, height, width, resize_mode="crop"
).to(device=self._execution_device, dtype=torch.bfloat16)
else:
image = self._preprocess_image(image, height, width).to(
device=self._execution_device, dtype=torch.bfloat16
)
if goal is not None:
if isinstance(goal, PIL.Image.Image):
goal = self.video_processor.preprocess(
goal, height, width, resize_mode="crop"
).to(device=self._execution_device, dtype=torch.bfloat16)
else:
goal = self._preprocess_image(goal, height, width).to(
device=self._execution_device, dtype=torch.bfloat16
)
if video is not None:
if isinstance(video, list) and all(
isinstance(v, PIL.Image.Image) for v in video
):
video = self.video_processor.preprocess(
video, height, width, resize_mode="crop"
).to(device=self._execution_device, dtype=torch.bfloat16)
else:
video = self._preprocess_image(video, height, width).to(
device=self._execution_device, dtype=torch.bfloat16
)
# TODO: check raymap shape
if raymap is not None:
if isinstance(raymap, np.ndarray):
raymap = torch.from_numpy(raymap).to(
self._execution_device, dtype=torch.bfloat16
)
if raymap.ndim == 4:
raymap = raymap.unsqueeze(0).to(
self._execution_device, dtype=torch.bfloat16
)
return image, goal, video, raymap
@torch.no_grad()
def prepare_latents(
self,
image: Optional[torch.Tensor] = None,
goal: Optional[torch.Tensor] = None,
video: Optional[torch.Tensor] = None,
raymap: Optional[torch.Tensor] = None,
batch_size: int = 1,
num_frames: int = 13,
height: int = 60,
width: int = 90,
dtype: Optional[torch.dtype] = None,
device: Optional[torch.device] = None,
generator: Optional[torch.Generator] = None,
):
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
num_frames = (num_frames - 1) // self.vae_scale_factor_temporal + 1
shape = (
batch_size,
num_frames,
56,
height // self.vae_scale_factor_spatial,
width // self.vae_scale_factor_spatial,
)
# For CogVideoX1.5, the latent should add 1 for padding (Not use)
if self.transformer.config.patch_size_t is not None:
shape = (
shape[:1]
+ (shape[1] + shape[1] % self.transformer.config.patch_size_t,)
+ shape[2:]
)
if image is not None:
image = image.unsqueeze(2)
if isinstance(generator, list):
image_latents = [
retrieve_latents(
self.vae.encode(image[i].unsqueeze(0)), generator[i]
)
for i in range(batch_size)
]
else:
image_latents = [
retrieve_latents(self.vae.encode(img.unsqueeze(0)), generator)
for img in image
]
image_latents = (
torch.cat(image_latents, dim=0).to(dtype).permute(0, 2, 1, 3, 4)
) # [B, F, C, H, W]
if not self.vae.config.invert_scale_latents:
image_latents = self.vae_scaling_factor_image * image_latents
else:
# This is awkward but required because the CogVideoX team forgot to multiply the
# scaling factor during training :)
image_latents = 1 / self.vae_scaling_factor_image * image_latents
if goal is not None:
goal = goal.unsqueeze(2)
if isinstance(generator, list):
goal_latents = [
retrieve_latents(
self.vae.encode(goal[i].unsqueeze(0)), generator[i]
)
for i in range(batch_size)
]
else:
goal_latents = [
retrieve_latents(self.vae.encode(img.unsqueeze(0)), generator)
for img in goal
]
goal_latents = (
torch.cat(goal_latents, dim=0).to(dtype).permute(0, 2, 1, 3, 4)
) # [B, F, C, H, W]
if not self.vae.config.invert_scale_latents:
goal_latents = self.vae_scaling_factor_image * goal_latents
else:
# This is awkward but required because the CogVideoX team forgot to multiply the
# scaling factor during training :)
goal_latents = 1 / self.vae_scaling_factor_image * goal_latents
if video is not None:
if video.ndim == 4:
video = video.unsqueeze(0)
video = video.permute(0, 2, 1, 3, 4)
if isinstance(generator, list):
video_latents = [
retrieve_latents(
self.vae.encode(video[i].unsqueeze(0)), generator[i]
)
for i in range(batch_size)
]
else:
video_latents = [
retrieve_latents(self.vae.encode(img.unsqueeze(0)), generator)
for img in video
]
video_latents = (
torch.cat(video_latents, dim=0).to(dtype).permute(0, 2, 1, 3, 4)
) # [B, F, C, H, W]
if not self.vae.config.invert_scale_latents:
video_latents = self.vae_scaling_factor_image * video_latents
else:
# This is awkward but required because the CogVideoX team forgot to multiply the
# scaling factor during training :)
video_latents = 1 / self.vae_scaling_factor_image * video_latents
if image is not None and goal is None:
padding_shape = (
batch_size,
num_frames - image_latents.shape[1],
*image_latents.shape[2:],
)
padding = torch.zeros(padding_shape, device=device, dtype=dtype)
condition_latents = torch.cat([image_latents, padding], dim=1)
elif goal is not None:
padding_shape = (
batch_size,
num_frames - goal_latents.shape[1] - image_latents.shape[1],
*image_latents.shape[2:],
)
padding = torch.zeros(padding_shape, device=device, dtype=dtype)
condition_latents = torch.cat([image_latents, padding, goal_latents], dim=1)
elif video is not None:
condition_latents = video_latents
if raymap is not None:
if raymap.shape[1] % self.vae_scale_factor_temporal != 0:
# repeat
raymap = torch.cat(
[
raymap[
:,
: self.vae_scale_factor_temporal
- raymap.shape[1] % self.vae_scale_factor_temporal,
],
raymap,
],
dim=1,
)
camera_conditions = rearrange(
raymap,
"b (n t) c h w -> b t (n c) h w",
n=self.vae_scale_factor_temporal,
)
else:
camera_conditions = torch.zeros(
batch_size,
num_frames,
24,
height // self.vae_scale_factor_spatial,
width // self.vae_scale_factor_spatial,
device=device,
dtype=dtype,
)
condition_latents = torch.cat([condition_latents, camera_conditions], dim=2)
latents = randn_tensor(shape, device=device, generator=generator, dtype=dtype)
# scale the initial noise by the standard deviation required by the scheduler
latents = latents * self.scheduler.init_noise_sigma
return latents, condition_latents
@torch.no_grad()
def __call__(
self,
task: Optional[str] = None,
image: Optional[PipelineImageInput] = None,
video: Optional[PipelineImageInput] = None,
goal: Optional[PipelineImageInput] = None,
raymap: Optional[Union[torch.Tensor, np.ndarray]] = None,
height: Optional[int] = None,
width: Optional[int] = None,
num_frames: Optional[int] = None,
num_inference_steps: Optional[int] = None,
timesteps: Optional[List[int]] = None,
guidance_scale: Optional[float] = None,
use_dynamic_cfg: bool = False,
num_videos_per_prompt: int = 1,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
return_dict: bool = True,
attention_kwargs: Optional[Dict] = None,
fps: Optional[int] = None,
) -> Union[AetherV1PipelineOutput, Tuple]:
if task is None:
if video is not None:
task = "reconstruction"
elif goal is not None:
task = "planning"
else:
task = "prediction"
height = (
height
or self.transformer.config.sample_height * self.vae_scale_factor_spatial
)
width = (
width
or self.transformer.config.sample_width * self.vae_scale_factor_spatial
)
num_frames = num_frames or self.transformer.config.sample_frames
fps = fps or self._base_fps
num_videos_per_prompt = 1
# 1. Check inputs. Raise error if not correct
self.check_inputs(
task=task,
image=image,
video=video,
goal=goal,
raymap=raymap,
height=height,
width=width,
num_frames=num_frames,
fps=fps,
)
# 2. Preprocess inputs
image, goal, video, raymap = self.preprocess_inputs(
image=image,
goal=goal,
video=video,
raymap=raymap,
height=height,
width=width,
num_frames=num_frames,
)
self._guidance_scale = guidance_scale
self._current_timestep = None
self._attention_kwargs = attention_kwargs
self._interrupt = False
batch_size = 1
device = self._execution_device
# 3. Encode input prompt
prompt_embeds = self.empty_prompt_embeds.to(device)
num_inference_steps = (
num_inference_steps or self._default_num_inference_steps[task]
)
guidance_scale = guidance_scale or self._default_guidance_scale[task]
use_dynamic_cfg = use_dynamic_cfg or self._default_use_dynamic_cfg[task]
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
# 4. Prepare timesteps
timesteps, num_inference_steps = retrieve_timesteps(
self.scheduler, num_inference_steps, device, timesteps
)
self._num_timesteps = len(timesteps)
# 5. Prepare latents
latents, condition_latents = self.prepare_latents(
image,
goal,
video,
raymap,
batch_size * num_videos_per_prompt,
num_frames,
height,
width,
prompt_embeds.dtype,
device,
generator,
)
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
# 7. Create rotary embeds if required
image_rotary_emb = (
self._prepare_rotary_positional_embeddings(
height, width, latents.size(1), device, fps=fps
)
if self.transformer.config.use_rotary_positional_embeddings
else None
)
# 8. Create ofs embeds if required
ofs_emb = (
None
if self.transformer.config.ofs_embed_dim is None
else latents.new_full((1,), fill_value=2.0)
)
# 8. Denoising loop
num_warmup_steps = max(
len(timesteps) - num_inference_steps * self.scheduler.order, 0
)
with self.progress_bar(total=num_inference_steps) as progress_bar:
# for DPM-solver++
old_pred_original_sample = None
for i, t in enumerate(timesteps):
if self.interrupt:
continue
self._current_timestep = t
latent_model_input = (
torch.cat([latents] * 2) if do_classifier_free_guidance else latents
)
latent_model_input = self.scheduler.scale_model_input(
latent_model_input, t
)
if do_classifier_free_guidance:
if task == "planning":
assert goal is not None
uncond = condition_latents.clone()
uncond[:, :, : self.vae.config.latent_channels] = 0
latent_condition = torch.cat([uncond, condition_latents])
elif task == "prediction":
uncond = condition_latents.clone()
uncond[:, :1, : self.vae.config.latent_channels] = 0
latent_condition = torch.cat([uncond, condition_latents])
else:
raise ValueError(
f"Task {task} not supported for classifier-free guidance."
)
else:
latent_condition = condition_latents
latent_model_input = torch.cat(
[latent_model_input, latent_condition], dim=2
)
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
timestep = t.expand(latent_model_input.shape[0])
# predict noise model_output
noise_pred = self.transformer(
hidden_states=latent_model_input,
encoder_hidden_states=prompt_embeds.repeat(
latent_model_input.shape[0], 1, 1
),
timestep=timestep,
ofs=ofs_emb,
image_rotary_emb=image_rotary_emb,
attention_kwargs=attention_kwargs,
return_dict=False,
)[0]
noise_pred = noise_pred.float()
# perform guidance
if use_dynamic_cfg:
self._guidance_scale = 1 + guidance_scale * (
(
1
- math.cos(
math.pi
* (
(num_inference_steps - t.item())
/ num_inference_steps
)
** 5.0
)
)
/ 2
)
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + self.guidance_scale * (
noise_pred_text - noise_pred_uncond
)
# compute the previous noisy sample x_t -> x_t-1
if not isinstance(self.scheduler, CogVideoXDPMScheduler):
latents = self.scheduler.step(
noise_pred, t, latents, **extra_step_kwargs, return_dict=False
)[0]
else:
latents, old_pred_original_sample = self.scheduler.step(
noise_pred,
old_pred_original_sample,
t,
timesteps[i - 1] if i > 0 else None,
latents,
**extra_step_kwargs,
return_dict=False,
)
latents = latents.to(prompt_embeds.dtype)
if i == len(timesteps) - 1 or (
(i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
):
progress_bar.update()
self._current_timestep = None
rgb_latents = latents[:, :, : self.vae.config.latent_channels]
disparity_latents = latents[
:, :, self.vae.config.latent_channels : self.vae.config.latent_channels * 2
]
camera_latents = latents[:, :, self.vae.config.latent_channels * 2 :]
rgb_video = self.decode_latents(rgb_latents)
rgb_video = self.video_processor.postprocess_video(
video=rgb_video, output_type="np"
)
disparity_video = self.decode_latents(disparity_latents)
disparity_video = disparity_video.mean(dim=1, keepdim=False)
disparity_video = disparity_video * 0.5 + 0.5
disparity_video = torch.square(disparity_video)
disparity_video = disparity_video.float().cpu().numpy()
raymap = (
rearrange(camera_latents, "b t (n c) h w -> b (n t) c h w", n=4)[
:, -rgb_video.shape[1] :, :, :
]
.float()
.cpu()
.numpy()
)
# Offload all models
self.maybe_free_model_hooks()
if not return_dict:
return (
rgb_video,
disparity_video,
raymap,
)
return AetherV1PipelineOutput(
rgb=rgb_video.squeeze(0),
disparity=disparity_video.squeeze(0),
raymap=raymap.squeeze(0),
)
|