Delete DOCUMENTATION.md
Browse files- DOCUMENTATION.md +0 -335
DOCUMENTATION.md
DELETED
@@ -1,335 +0,0 @@
|
|
1 |
-
# MediSync: Multi-Modal Medical Analysis System
|
2 |
-
|
3 |
-
## Comprehensive Technical Documentation
|
4 |
-
|
5 |
-
### Table of Contents
|
6 |
-
1. [Introduction](#introduction)
|
7 |
-
2. [System Architecture](#system-architecture)
|
8 |
-
3. [Installation](#installation)
|
9 |
-
4. [Usage](#usage)
|
10 |
-
5. [Core Components](#core-components)
|
11 |
-
6. [Model Details](#model-details)
|
12 |
-
7. [API Reference](#api-reference)
|
13 |
-
8. [Extending the System](#extending-the-system)
|
14 |
-
9. [Troubleshooting](#troubleshooting)
|
15 |
-
10. [References](#references)
|
16 |
-
|
17 |
-
---
|
18 |
-
|
19 |
-
## Introduction
|
20 |
-
|
21 |
-
MediSync is a multi-modal AI system that combines X-ray image analysis with medical report text processing to provide comprehensive medical insights. By leveraging state-of-the-art deep learning models for both vision and language understanding, MediSync can:
|
22 |
-
|
23 |
-
- Analyze chest X-ray images to detect abnormalities
|
24 |
-
- Extract key clinical information from medical reports
|
25 |
-
- Fuse insights from both modalities for enhanced diagnosis support
|
26 |
-
- Provide comprehensive visualization of analysis results
|
27 |
-
|
28 |
-
This AI system demonstrates the power of multi-modal fusion in the healthcare domain, where integrating information from multiple sources can lead to more robust and accurate analyses.
|
29 |
-
|
30 |
-
## System Architecture
|
31 |
-
|
32 |
-
MediSync follows a modular architecture with three main components:
|
33 |
-
|
34 |
-
1. **Image Analysis Module**: Processes X-ray images using pre-trained vision models
|
35 |
-
2. **Text Analysis Module**: Analyzes medical reports using NLP models
|
36 |
-
3. **Multimodal Fusion Module**: Combines insights from both modalities
|
37 |
-
|
38 |
-
The system uses the following high-level workflow:
|
39 |
-
|
40 |
-
```
|
41 |
-
βββββββββββββββββββ
|
42 |
-
β X-ray Image β
|
43 |
-
ββββββββββ¬βββββββββ
|
44 |
-
β
|
45 |
-
βΌ
|
46 |
-
βββββββββββββββββββ βββββββββββββββββββ βββββββββββββββββββ
|
47 |
-
β Preprocessing βββββΆβ Image Analysis βββββΆβ β
|
48 |
-
βββββββββββββββββββ βββββββββββββββββββ β β
|
49 |
-
β Multimodal β
|
50 |
-
βββββββββββββββββββ βββββββββββββββββββ β Fusion βββββΆ Results
|
51 |
-
β Medical Report βββββΆβ Text Analysis βββββΆβ β
|
52 |
-
βββββββββββββββββββ βββββββββββββββββββ β β
|
53 |
-
βββββββββββββββββββ
|
54 |
-
```
|
55 |
-
|
56 |
-
## Installation
|
57 |
-
|
58 |
-
### Prerequisites
|
59 |
-
- Python 3.8 or higher
|
60 |
-
- Pip package manager
|
61 |
-
|
62 |
-
### Setup Instructions
|
63 |
-
|
64 |
-
1. Clone the repository:
|
65 |
-
```bash
|
66 |
-
git clone [repository-url]
|
67 |
-
cd mediSync
|
68 |
-
```
|
69 |
-
|
70 |
-
2. Install dependencies:
|
71 |
-
```bash
|
72 |
-
pip install -r requirements.txt
|
73 |
-
```
|
74 |
-
|
75 |
-
3. Download sample data:
|
76 |
-
```bash
|
77 |
-
python -m mediSync.utils.download_samples
|
78 |
-
```
|
79 |
-
|
80 |
-
## Usage
|
81 |
-
|
82 |
-
### Running the Application
|
83 |
-
|
84 |
-
To launch the MediSync application with the Gradio interface:
|
85 |
-
|
86 |
-
```bash
|
87 |
-
python run.py
|
88 |
-
```
|
89 |
-
|
90 |
-
This will:
|
91 |
-
1. Download sample data if not already present
|
92 |
-
2. Initialize the application
|
93 |
-
3. Launch the Gradio web interface
|
94 |
-
|
95 |
-
### Web Interface
|
96 |
-
|
97 |
-
MediSync provides a user-friendly web interface with three main tabs:
|
98 |
-
|
99 |
-
1. **Multimodal Analysis**: Upload an X-ray image and enter a medical report for combined analysis
|
100 |
-
2. **Image Analysis**: Upload an X-ray image for image-only analysis
|
101 |
-
3. **Text Analysis**: Enter a medical report for text-only analysis
|
102 |
-
|
103 |
-
### Command Line Usage
|
104 |
-
|
105 |
-
You can also use the core components directly from Python:
|
106 |
-
|
107 |
-
```python
|
108 |
-
from mediSync.models import XRayImageAnalyzer, MedicalReportAnalyzer, MultimodalFusion
|
109 |
-
|
110 |
-
# Initialize models
|
111 |
-
fusion_model = MultimodalFusion()
|
112 |
-
|
113 |
-
# Analyze image and text
|
114 |
-
results = fusion_model.analyze("path/to/image.jpg", "Medical report text...")
|
115 |
-
|
116 |
-
# Get explanation
|
117 |
-
explanation = fusion_model.get_explanation(results)
|
118 |
-
print(explanation)
|
119 |
-
```
|
120 |
-
|
121 |
-
## Core Components
|
122 |
-
|
123 |
-
### Image Analysis Module
|
124 |
-
|
125 |
-
The `XRayImageAnalyzer` class is responsible for analyzing X-ray images:
|
126 |
-
|
127 |
-
- Uses the DeiT (Data-efficient image Transformers) model fine-tuned on chest X-rays
|
128 |
-
- Detects abnormalities and classifies findings
|
129 |
-
- Provides confidence scores and primary findings
|
130 |
-
|
131 |
-
Key methods:
|
132 |
-
- `analyze(image_path)`: Analyzes an X-ray image
|
133 |
-
- `get_explanation(results)`: Generates a human-readable explanation
|
134 |
-
|
135 |
-
### Text Analysis Module
|
136 |
-
|
137 |
-
The `MedicalReportAnalyzer` class processes medical report text:
|
138 |
-
|
139 |
-
- Extracts medical entities (conditions, treatments, tests)
|
140 |
-
- Assesses severity level
|
141 |
-
- Extracts key findings
|
142 |
-
- Suggests follow-up actions
|
143 |
-
|
144 |
-
Key methods:
|
145 |
-
- `extract_entities(text)`: Extracts medical entities
|
146 |
-
- `assess_severity(text)`: Determines severity level
|
147 |
-
- `extract_findings(text)`: Extracts key clinical findings
|
148 |
-
- `suggest_followup(text, entities, severity)`: Suggests follow-up actions
|
149 |
-
- `analyze(text)`: Performs comprehensive analysis
|
150 |
-
|
151 |
-
### Multimodal Fusion Module
|
152 |
-
|
153 |
-
The `MultimodalFusion` class combines insights from both modalities:
|
154 |
-
|
155 |
-
- Calculates agreement between image and text analyses
|
156 |
-
- Determines confidence-weighted findings
|
157 |
-
- Provides comprehensive severity assessment
|
158 |
-
- Merges follow-up recommendations
|
159 |
-
|
160 |
-
Key methods:
|
161 |
-
- `analyze_image(image_path)`: Analyzes image only
|
162 |
-
- `analyze_text(text)`: Analyzes text only
|
163 |
-
- `analyze(image_path, report_text)`: Performs multimodal analysis
|
164 |
-
- `get_explanation(fused_results)`: Generates comprehensive explanation
|
165 |
-
|
166 |
-
## Model Details
|
167 |
-
|
168 |
-
### X-ray Analysis Model
|
169 |
-
|
170 |
-
- **Model**: facebook/deit-base-patch16-224-medical-cxr
|
171 |
-
- **Architecture**: Data-efficient image Transformer (DeiT)
|
172 |
-
- **Training Data**: Chest X-ray datasets
|
173 |
-
- **Input Size**: 224x224 pixels
|
174 |
-
- **Output**: Classification probabilities for various conditions
|
175 |
-
|
176 |
-
### Medical Text Analysis Models
|
177 |
-
|
178 |
-
- **Entity Recognition Model**: samrawal/bert-base-uncased_medical-ner
|
179 |
-
- **Classification Model**: medicalai/ClinicalBERT
|
180 |
-
- **Architecture**: BERT-based transformer models
|
181 |
-
- **Training Data**: Medical text and reports
|
182 |
-
|
183 |
-
## API Reference
|
184 |
-
|
185 |
-
### XRayImageAnalyzer
|
186 |
-
|
187 |
-
```python
|
188 |
-
from mediSync.models import XRayImageAnalyzer
|
189 |
-
|
190 |
-
# Initialize
|
191 |
-
analyzer = XRayImageAnalyzer(model_name="facebook/deit-base-patch16-224-medical-cxr")
|
192 |
-
|
193 |
-
# Analyze image
|
194 |
-
results = analyzer.analyze("path/to/image.jpg")
|
195 |
-
|
196 |
-
# Get explanation
|
197 |
-
explanation = analyzer.get_explanation(results)
|
198 |
-
```
|
199 |
-
|
200 |
-
### MedicalReportAnalyzer
|
201 |
-
|
202 |
-
```python
|
203 |
-
from mediSync.models import MedicalReportAnalyzer
|
204 |
-
|
205 |
-
# Initialize
|
206 |
-
analyzer = MedicalReportAnalyzer()
|
207 |
-
|
208 |
-
# Analyze report
|
209 |
-
results = analyzer.analyze("Medical report text...")
|
210 |
-
|
211 |
-
# Access specific components
|
212 |
-
entities = results["entities"]
|
213 |
-
severity = results["severity"]
|
214 |
-
findings = results["findings"]
|
215 |
-
recommendations = results["followup_recommendations"]
|
216 |
-
```
|
217 |
-
|
218 |
-
### MultimodalFusion
|
219 |
-
|
220 |
-
```python
|
221 |
-
from mediSync.models import MultimodalFusion
|
222 |
-
|
223 |
-
# Initialize
|
224 |
-
fusion = MultimodalFusion()
|
225 |
-
|
226 |
-
# Multimodal analysis
|
227 |
-
results = fusion.analyze("path/to/image.jpg", "Medical report text...")
|
228 |
-
|
229 |
-
# Get explanation
|
230 |
-
explanation = fusion.get_explanation(results)
|
231 |
-
```
|
232 |
-
|
233 |
-
## Extending the System
|
234 |
-
|
235 |
-
### Adding New Models
|
236 |
-
|
237 |
-
To add a new image analysis model:
|
238 |
-
|
239 |
-
1. Create a new class that follows the same interface as `XRayImageAnalyzer`
|
240 |
-
2. Update the `MultimodalFusion` class to use your new model
|
241 |
-
|
242 |
-
```python
|
243 |
-
class NewXRayModel:
|
244 |
-
def __init__(self, model_name, device=None):
|
245 |
-
# Initialize your model
|
246 |
-
pass
|
247 |
-
|
248 |
-
def analyze(self, image_path):
|
249 |
-
# Implement analysis logic
|
250 |
-
return results
|
251 |
-
|
252 |
-
def get_explanation(self, results):
|
253 |
-
# Generate explanation
|
254 |
-
return explanation
|
255 |
-
```
|
256 |
-
|
257 |
-
### Custom Preprocessing
|
258 |
-
|
259 |
-
You can extend the preprocessing utilities in `utils/preprocessing.py` for custom data preparation:
|
260 |
-
|
261 |
-
```python
|
262 |
-
def my_custom_preprocessor(image_path, **kwargs):
|
263 |
-
# Implement custom preprocessing
|
264 |
-
return processed_image
|
265 |
-
```
|
266 |
-
|
267 |
-
### Visualization Extensions
|
268 |
-
|
269 |
-
To add new visualization options, extend the utilities in `utils/visualization.py`:
|
270 |
-
|
271 |
-
```python
|
272 |
-
def my_custom_visualization(results, **kwargs):
|
273 |
-
# Create custom visualization
|
274 |
-
return figure
|
275 |
-
```
|
276 |
-
|
277 |
-
## Troubleshooting
|
278 |
-
|
279 |
-
### Common Issues
|
280 |
-
|
281 |
-
1. **Model Loading Errors**
|
282 |
-
- Ensure you have a stable internet connection for downloading models
|
283 |
-
- Check that you have sufficient disk space
|
284 |
-
- Try specifying a different model checkpoint
|
285 |
-
|
286 |
-
2. **Image Processing Errors**
|
287 |
-
- Ensure images are in a supported format (JPEG, PNG)
|
288 |
-
- Check that the image is a valid X-ray image
|
289 |
-
- Try preprocessing the image manually using the utility functions
|
290 |
-
|
291 |
-
3. **Performance Issues**
|
292 |
-
- For faster inference, use a GPU if available
|
293 |
-
- Reduce image resolution if processing is too slow
|
294 |
-
- Use the text-only analysis for quicker results
|
295 |
-
|
296 |
-
### Logging
|
297 |
-
|
298 |
-
MediSync uses Python's logging module for debug information:
|
299 |
-
|
300 |
-
```python
|
301 |
-
import logging
|
302 |
-
logging.basicConfig(level=logging.DEBUG)
|
303 |
-
```
|
304 |
-
|
305 |
-
Log files are saved to `mediSync.log` in the application directory.
|
306 |
-
|
307 |
-
## References
|
308 |
-
|
309 |
-
### Datasets
|
310 |
-
|
311 |
-
- [MIMIC-CXR](https://physionet.org/content/mimic-cxr/2.0.0/): Large dataset of chest radiographs with reports
|
312 |
-
- [ChestX-ray14](https://www.nih.gov/news-events/news-releases/nih-clinical-center-provides-one-largest-publicly-available-chest-x-ray-datasets-scientific-community): NIH dataset of chest X-rays
|
313 |
-
|
314 |
-
### Papers
|
315 |
-
|
316 |
-
- He, K., et al. (2020). "Vision Transformers for Medical Image Analysis"
|
317 |
-
- Irvin, J., et al. (2019). "CheXpert: A Large Chest Radiograph Dataset with Uncertainty Labels and Expert Comparison"
|
318 |
-
- Johnson, A.E.W., et al. (2019). "MIMIC-CXR-JPG, a large publicly available database of labeled chest radiographs"
|
319 |
-
|
320 |
-
### Tools and Libraries
|
321 |
-
|
322 |
-
- [Hugging Face Transformers](https://huggingface.co/docs/transformers/index)
|
323 |
-
- [PyTorch](https://pytorch.org/)
|
324 |
-
- [Gradio](https://gradio.app/)
|
325 |
-
|
326 |
-
---
|
327 |
-
|
328 |
-
## License
|
329 |
-
|
330 |
-
This project is licensed under the MIT License - see the LICENSE file for details.
|
331 |
-
|
332 |
-
## Acknowledgments
|
333 |
-
|
334 |
-
- The development of MediSync was inspired by recent advances in multi-modal learning in healthcare.
|
335 |
-
- Special thanks to the open-source community for providing pre-trained models and tools.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|