Amarthya7 commited on
Commit
5653db5
Β·
verified Β·
1 Parent(s): 6ad0809

Delete DOCUMENTATION.md

Browse files
Files changed (1) hide show
  1. DOCUMENTATION.md +0 -335
DOCUMENTATION.md DELETED
@@ -1,335 +0,0 @@
1
- # MediSync: Multi-Modal Medical Analysis System
2
-
3
- ## Comprehensive Technical Documentation
4
-
5
- ### Table of Contents
6
- 1. [Introduction](#introduction)
7
- 2. [System Architecture](#system-architecture)
8
- 3. [Installation](#installation)
9
- 4. [Usage](#usage)
10
- 5. [Core Components](#core-components)
11
- 6. [Model Details](#model-details)
12
- 7. [API Reference](#api-reference)
13
- 8. [Extending the System](#extending-the-system)
14
- 9. [Troubleshooting](#troubleshooting)
15
- 10. [References](#references)
16
-
17
- ---
18
-
19
- ## Introduction
20
-
21
- MediSync is a multi-modal AI system that combines X-ray image analysis with medical report text processing to provide comprehensive medical insights. By leveraging state-of-the-art deep learning models for both vision and language understanding, MediSync can:
22
-
23
- - Analyze chest X-ray images to detect abnormalities
24
- - Extract key clinical information from medical reports
25
- - Fuse insights from both modalities for enhanced diagnosis support
26
- - Provide comprehensive visualization of analysis results
27
-
28
- This AI system demonstrates the power of multi-modal fusion in the healthcare domain, where integrating information from multiple sources can lead to more robust and accurate analyses.
29
-
30
- ## System Architecture
31
-
32
- MediSync follows a modular architecture with three main components:
33
-
34
- 1. **Image Analysis Module**: Processes X-ray images using pre-trained vision models
35
- 2. **Text Analysis Module**: Analyzes medical reports using NLP models
36
- 3. **Multimodal Fusion Module**: Combines insights from both modalities
37
-
38
- The system uses the following high-level workflow:
39
-
40
- ```
41
- β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
42
- β”‚ X-ray Image β”‚
43
- β””β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”˜
44
- β”‚
45
- β–Ό
46
- β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
47
- β”‚ Preprocessing │───▢│ Image Analysis │───▢│ β”‚
48
- β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚ β”‚
49
- β”‚ Multimodal β”‚
50
- β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ Fusion │───▢ Results
51
- β”‚ Medical Report │───▢│ Text Analysis │───▢│ β”‚
52
- β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚ β”‚
53
- β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
54
- ```
55
-
56
- ## Installation
57
-
58
- ### Prerequisites
59
- - Python 3.8 or higher
60
- - Pip package manager
61
-
62
- ### Setup Instructions
63
-
64
- 1. Clone the repository:
65
- ```bash
66
- git clone [repository-url]
67
- cd mediSync
68
- ```
69
-
70
- 2. Install dependencies:
71
- ```bash
72
- pip install -r requirements.txt
73
- ```
74
-
75
- 3. Download sample data:
76
- ```bash
77
- python -m mediSync.utils.download_samples
78
- ```
79
-
80
- ## Usage
81
-
82
- ### Running the Application
83
-
84
- To launch the MediSync application with the Gradio interface:
85
-
86
- ```bash
87
- python run.py
88
- ```
89
-
90
- This will:
91
- 1. Download sample data if not already present
92
- 2. Initialize the application
93
- 3. Launch the Gradio web interface
94
-
95
- ### Web Interface
96
-
97
- MediSync provides a user-friendly web interface with three main tabs:
98
-
99
- 1. **Multimodal Analysis**: Upload an X-ray image and enter a medical report for combined analysis
100
- 2. **Image Analysis**: Upload an X-ray image for image-only analysis
101
- 3. **Text Analysis**: Enter a medical report for text-only analysis
102
-
103
- ### Command Line Usage
104
-
105
- You can also use the core components directly from Python:
106
-
107
- ```python
108
- from mediSync.models import XRayImageAnalyzer, MedicalReportAnalyzer, MultimodalFusion
109
-
110
- # Initialize models
111
- fusion_model = MultimodalFusion()
112
-
113
- # Analyze image and text
114
- results = fusion_model.analyze("path/to/image.jpg", "Medical report text...")
115
-
116
- # Get explanation
117
- explanation = fusion_model.get_explanation(results)
118
- print(explanation)
119
- ```
120
-
121
- ## Core Components
122
-
123
- ### Image Analysis Module
124
-
125
- The `XRayImageAnalyzer` class is responsible for analyzing X-ray images:
126
-
127
- - Uses the DeiT (Data-efficient image Transformers) model fine-tuned on chest X-rays
128
- - Detects abnormalities and classifies findings
129
- - Provides confidence scores and primary findings
130
-
131
- Key methods:
132
- - `analyze(image_path)`: Analyzes an X-ray image
133
- - `get_explanation(results)`: Generates a human-readable explanation
134
-
135
- ### Text Analysis Module
136
-
137
- The `MedicalReportAnalyzer` class processes medical report text:
138
-
139
- - Extracts medical entities (conditions, treatments, tests)
140
- - Assesses severity level
141
- - Extracts key findings
142
- - Suggests follow-up actions
143
-
144
- Key methods:
145
- - `extract_entities(text)`: Extracts medical entities
146
- - `assess_severity(text)`: Determines severity level
147
- - `extract_findings(text)`: Extracts key clinical findings
148
- - `suggest_followup(text, entities, severity)`: Suggests follow-up actions
149
- - `analyze(text)`: Performs comprehensive analysis
150
-
151
- ### Multimodal Fusion Module
152
-
153
- The `MultimodalFusion` class combines insights from both modalities:
154
-
155
- - Calculates agreement between image and text analyses
156
- - Determines confidence-weighted findings
157
- - Provides comprehensive severity assessment
158
- - Merges follow-up recommendations
159
-
160
- Key methods:
161
- - `analyze_image(image_path)`: Analyzes image only
162
- - `analyze_text(text)`: Analyzes text only
163
- - `analyze(image_path, report_text)`: Performs multimodal analysis
164
- - `get_explanation(fused_results)`: Generates comprehensive explanation
165
-
166
- ## Model Details
167
-
168
- ### X-ray Analysis Model
169
-
170
- - **Model**: facebook/deit-base-patch16-224-medical-cxr
171
- - **Architecture**: Data-efficient image Transformer (DeiT)
172
- - **Training Data**: Chest X-ray datasets
173
- - **Input Size**: 224x224 pixels
174
- - **Output**: Classification probabilities for various conditions
175
-
176
- ### Medical Text Analysis Models
177
-
178
- - **Entity Recognition Model**: samrawal/bert-base-uncased_medical-ner
179
- - **Classification Model**: medicalai/ClinicalBERT
180
- - **Architecture**: BERT-based transformer models
181
- - **Training Data**: Medical text and reports
182
-
183
- ## API Reference
184
-
185
- ### XRayImageAnalyzer
186
-
187
- ```python
188
- from mediSync.models import XRayImageAnalyzer
189
-
190
- # Initialize
191
- analyzer = XRayImageAnalyzer(model_name="facebook/deit-base-patch16-224-medical-cxr")
192
-
193
- # Analyze image
194
- results = analyzer.analyze("path/to/image.jpg")
195
-
196
- # Get explanation
197
- explanation = analyzer.get_explanation(results)
198
- ```
199
-
200
- ### MedicalReportAnalyzer
201
-
202
- ```python
203
- from mediSync.models import MedicalReportAnalyzer
204
-
205
- # Initialize
206
- analyzer = MedicalReportAnalyzer()
207
-
208
- # Analyze report
209
- results = analyzer.analyze("Medical report text...")
210
-
211
- # Access specific components
212
- entities = results["entities"]
213
- severity = results["severity"]
214
- findings = results["findings"]
215
- recommendations = results["followup_recommendations"]
216
- ```
217
-
218
- ### MultimodalFusion
219
-
220
- ```python
221
- from mediSync.models import MultimodalFusion
222
-
223
- # Initialize
224
- fusion = MultimodalFusion()
225
-
226
- # Multimodal analysis
227
- results = fusion.analyze("path/to/image.jpg", "Medical report text...")
228
-
229
- # Get explanation
230
- explanation = fusion.get_explanation(results)
231
- ```
232
-
233
- ## Extending the System
234
-
235
- ### Adding New Models
236
-
237
- To add a new image analysis model:
238
-
239
- 1. Create a new class that follows the same interface as `XRayImageAnalyzer`
240
- 2. Update the `MultimodalFusion` class to use your new model
241
-
242
- ```python
243
- class NewXRayModel:
244
- def __init__(self, model_name, device=None):
245
- # Initialize your model
246
- pass
247
-
248
- def analyze(self, image_path):
249
- # Implement analysis logic
250
- return results
251
-
252
- def get_explanation(self, results):
253
- # Generate explanation
254
- return explanation
255
- ```
256
-
257
- ### Custom Preprocessing
258
-
259
- You can extend the preprocessing utilities in `utils/preprocessing.py` for custom data preparation:
260
-
261
- ```python
262
- def my_custom_preprocessor(image_path, **kwargs):
263
- # Implement custom preprocessing
264
- return processed_image
265
- ```
266
-
267
- ### Visualization Extensions
268
-
269
- To add new visualization options, extend the utilities in `utils/visualization.py`:
270
-
271
- ```python
272
- def my_custom_visualization(results, **kwargs):
273
- # Create custom visualization
274
- return figure
275
- ```
276
-
277
- ## Troubleshooting
278
-
279
- ### Common Issues
280
-
281
- 1. **Model Loading Errors**
282
- - Ensure you have a stable internet connection for downloading models
283
- - Check that you have sufficient disk space
284
- - Try specifying a different model checkpoint
285
-
286
- 2. **Image Processing Errors**
287
- - Ensure images are in a supported format (JPEG, PNG)
288
- - Check that the image is a valid X-ray image
289
- - Try preprocessing the image manually using the utility functions
290
-
291
- 3. **Performance Issues**
292
- - For faster inference, use a GPU if available
293
- - Reduce image resolution if processing is too slow
294
- - Use the text-only analysis for quicker results
295
-
296
- ### Logging
297
-
298
- MediSync uses Python's logging module for debug information:
299
-
300
- ```python
301
- import logging
302
- logging.basicConfig(level=logging.DEBUG)
303
- ```
304
-
305
- Log files are saved to `mediSync.log` in the application directory.
306
-
307
- ## References
308
-
309
- ### Datasets
310
-
311
- - [MIMIC-CXR](https://physionet.org/content/mimic-cxr/2.0.0/): Large dataset of chest radiographs with reports
312
- - [ChestX-ray14](https://www.nih.gov/news-events/news-releases/nih-clinical-center-provides-one-largest-publicly-available-chest-x-ray-datasets-scientific-community): NIH dataset of chest X-rays
313
-
314
- ### Papers
315
-
316
- - He, K., et al. (2020). "Vision Transformers for Medical Image Analysis"
317
- - Irvin, J., et al. (2019). "CheXpert: A Large Chest Radiograph Dataset with Uncertainty Labels and Expert Comparison"
318
- - Johnson, A.E.W., et al. (2019). "MIMIC-CXR-JPG, a large publicly available database of labeled chest radiographs"
319
-
320
- ### Tools and Libraries
321
-
322
- - [Hugging Face Transformers](https://huggingface.co/docs/transformers/index)
323
- - [PyTorch](https://pytorch.org/)
324
- - [Gradio](https://gradio.app/)
325
-
326
- ---
327
-
328
- ## License
329
-
330
- This project is licensed under the MIT License - see the LICENSE file for details.
331
-
332
- ## Acknowledgments
333
-
334
- - The development of MediSync was inspired by recent advances in multi-modal learning in healthcare.
335
- - Special thanks to the open-source community for providing pre-trained models and tools.