Spaces:
Runtime error
Runtime error
Upload 5 files
Browse files- README.md +94 -13
- __init__.py +9 -0
- app.py +189 -0
- requirements.txt +10 -0
- run.py +90 -0
README.md
CHANGED
@@ -1,13 +1,94 @@
|
|
1 |
-
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
-
sdk:
|
7 |
-
sdk_version:
|
8 |
-
app_file:
|
9 |
-
pinned: false
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Visual Question Answering (VQA) System
|
3 |
+
emoji: 🏞️
|
4 |
+
colorFrom: blue
|
5 |
+
colorTo: purple
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 5.20.1
|
8 |
+
app_file: run.py
|
9 |
+
pinned: false
|
10 |
+
---
|
11 |
+
# Visual Question Answering (VQA) System
|
12 |
+
|
13 |
+
A multi-modal AI application that allows users to upload images and ask questions about them. This project uses pre-trained models from Hugging Face to analyze images and answer natural language questions.
|
14 |
+
|
15 |
+
## Features
|
16 |
+
|
17 |
+
- Upload images in common formats (jpg, png, etc.)
|
18 |
+
- Ask questions about image content in natural language
|
19 |
+
- Get AI-generated answers based on image content
|
20 |
+
- User-friendly Streamlit interface
|
21 |
+
- Support for various types of questions (objects, attributes, counting, etc.)
|
22 |
+
|
23 |
+
## Technical Stack
|
24 |
+
|
25 |
+
- **Python**: Main programming language
|
26 |
+
- **PyTorch & Transformers**: Deep learning frameworks for running the models
|
27 |
+
- **Streamlit**: Interactive web application framework
|
28 |
+
- **HuggingFace Models**: Pre-trained visual question answering models
|
29 |
+
- **PIL**: Image processing
|
30 |
+
|
31 |
+
## Setup Instructions
|
32 |
+
|
33 |
+
1. Clone this repository:
|
34 |
+
```
|
35 |
+
git clone https://github.com/your-username/visual-question-answering.git
|
36 |
+
cd visual-question-answering
|
37 |
+
```
|
38 |
+
|
39 |
+
2. Create a virtual environment (recommended):
|
40 |
+
```
|
41 |
+
python -m venv venv
|
42 |
+
# On Windows
|
43 |
+
venv\Scripts\activate
|
44 |
+
# On macOS/Linux
|
45 |
+
source venv/bin/activate
|
46 |
+
```
|
47 |
+
|
48 |
+
3. Install dependencies:
|
49 |
+
```
|
50 |
+
pip install -r requirements.txt
|
51 |
+
```
|
52 |
+
|
53 |
+
4. Run the application:
|
54 |
+
```
|
55 |
+
python run.py
|
56 |
+
```
|
57 |
+
|
58 |
+
Or directly with Streamlit:
|
59 |
+
```
|
60 |
+
streamlit run app.py
|
61 |
+
```
|
62 |
+
|
63 |
+
5. Open a web browser and go to `http://localhost:8501`
|
64 |
+
|
65 |
+
## Usage
|
66 |
+
|
67 |
+
1. Upload an image using the file upload area
|
68 |
+
2. Type your question about the image in the text field
|
69 |
+
3. Select a model from the sidebar (BLIP or ViLT)
|
70 |
+
4. Click "Get Answer" to get an AI-generated response
|
71 |
+
5. View the answer displayed on the right side of the screen
|
72 |
+
|
73 |
+
## Models Used
|
74 |
+
|
75 |
+
This application uses the following pre-trained models from Hugging Face:
|
76 |
+
- **BLIP**: For general visual question answering with free-form answers
|
77 |
+
- **ViLT**: For detailed understanding of image content and yes/no questions
|
78 |
+
|
79 |
+
## Project Structure
|
80 |
+
|
81 |
+
- `app.py`: Main Streamlit application
|
82 |
+
- `models/`: Contains model handling code
|
83 |
+
- `utils/`: Utility functions for image processing and more
|
84 |
+
- `static/`: Static files including uploaded images
|
85 |
+
- `run.py`: Script to run the application
|
86 |
+
|
87 |
+
## License
|
88 |
+
|
89 |
+
This project is licensed under the MIT License - see the LICENSE file for details.
|
90 |
+
|
91 |
+
## Acknowledgments
|
92 |
+
|
93 |
+
- Hugging Face for their excellent pre-trained models
|
94 |
+
- The open-source community for various libraries used in this project
|
__init__.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Visual Question Answering - Multi-Modal AI Application
|
3 |
+
|
4 |
+
A Python application for answering questions about images using
|
5 |
+
pre-trained Hugging Face models for multi-modal understanding.
|
6 |
+
"""
|
7 |
+
|
8 |
+
__version__ = "0.1.0"
|
9 |
+
__author__ = "Multi-Modal AI Project"
|
app.py
ADDED
@@ -0,0 +1,189 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Visual Question Answering Streamlit Application
|
3 |
+
"""
|
4 |
+
|
5 |
+
import logging
|
6 |
+
import os
|
7 |
+
import sys
|
8 |
+
import time
|
9 |
+
from datetime import datetime
|
10 |
+
|
11 |
+
import streamlit as st
|
12 |
+
from PIL import Image
|
13 |
+
|
14 |
+
# Configure path to include parent directory
|
15 |
+
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
|
16 |
+
|
17 |
+
# Configure logging
|
18 |
+
log_dir = os.path.join(os.path.dirname(os.path.abspath(__file__)), "logs")
|
19 |
+
os.makedirs(log_dir, exist_ok=True)
|
20 |
+
log_file = os.path.join(
|
21 |
+
log_dir, f"vqa_app_{datetime.now().strftime('%Y%m%d_%H%M%S')}.log"
|
22 |
+
)
|
23 |
+
|
24 |
+
logging.basicConfig(
|
25 |
+
level=logging.INFO,
|
26 |
+
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s",
|
27 |
+
handlers=[logging.FileHandler(log_file), logging.StreamHandler()],
|
28 |
+
)
|
29 |
+
logger = logging.getLogger("vqa_app")
|
30 |
+
|
31 |
+
# Import modules
|
32 |
+
from models import VQAInference
|
33 |
+
from utils.image_utils import resize_image
|
34 |
+
|
35 |
+
# Global variables
|
36 |
+
MODEL_OPTIONS = {"BLIP": "blip", "ViLT": "vilt"}
|
37 |
+
|
38 |
+
# Setup directories
|
39 |
+
uploads_dir = os.path.join(
|
40 |
+
os.path.dirname(os.path.abspath(__file__)), "static", "uploads"
|
41 |
+
)
|
42 |
+
os.makedirs(uploads_dir, exist_ok=True)
|
43 |
+
|
44 |
+
# Configure page
|
45 |
+
st.set_page_config(
|
46 |
+
page_title="Visual Question Answering",
|
47 |
+
page_icon="🔍",
|
48 |
+
layout="wide",
|
49 |
+
initial_sidebar_state="expanded",
|
50 |
+
)
|
51 |
+
|
52 |
+
|
53 |
+
@st.cache_resource
|
54 |
+
def load_model(model_name):
|
55 |
+
"""Load the VQA model with caching for better performance"""
|
56 |
+
try:
|
57 |
+
logger.info(f"Loading model: {model_name}")
|
58 |
+
return VQAInference(model_name=model_name)
|
59 |
+
except Exception as e:
|
60 |
+
logger.error(f"Error loading model: {str(e)}")
|
61 |
+
st.error(f"Failed to load model: {str(e)}")
|
62 |
+
return None
|
63 |
+
|
64 |
+
|
65 |
+
def process_image_and_question(image_file, question, model_name):
|
66 |
+
"""Process the uploaded image and question to generate an answer"""
|
67 |
+
start_time = time.time()
|
68 |
+
|
69 |
+
try:
|
70 |
+
# Load image
|
71 |
+
image = Image.open(image_file).convert("RGB")
|
72 |
+
logger.info(f"Image loaded, size: {image.size}")
|
73 |
+
|
74 |
+
# Resize image
|
75 |
+
image = resize_image(image)
|
76 |
+
logger.info(f"Image resized to: {image.size}")
|
77 |
+
|
78 |
+
# Load model
|
79 |
+
model = load_model(model_name)
|
80 |
+
if model is None:
|
81 |
+
return None
|
82 |
+
|
83 |
+
# Generate answer
|
84 |
+
logger.info(f"Generating answer for question: '{question}'")
|
85 |
+
answer = model.predict(image, question)
|
86 |
+
logger.info(f"Answer generated: '{answer}'")
|
87 |
+
|
88 |
+
# Calculate processing time
|
89 |
+
processing_time = time.time() - start_time
|
90 |
+
|
91 |
+
return {"answer": answer, "processing_time": f"{processing_time:.2f} seconds"}
|
92 |
+
except Exception as e:
|
93 |
+
logger.error(f"Error processing request: {str(e)}", exc_info=True)
|
94 |
+
return None
|
95 |
+
|
96 |
+
|
97 |
+
def main():
|
98 |
+
"""Main function for Streamlit app"""
|
99 |
+
# Header
|
100 |
+
st.title("Visual Question Answering")
|
101 |
+
st.markdown("Upload an image, ask a question, and get AI-powered answers")
|
102 |
+
|
103 |
+
# Sidebar for model selection
|
104 |
+
st.sidebar.title("Model Options")
|
105 |
+
selected_model_name = st.sidebar.radio(
|
106 |
+
"Choose a model:", options=list(MODEL_OPTIONS.keys()), index=0
|
107 |
+
)
|
108 |
+
model_name = MODEL_OPTIONS[selected_model_name]
|
109 |
+
|
110 |
+
st.sidebar.markdown("---")
|
111 |
+
st.sidebar.markdown("## About the Models")
|
112 |
+
st.sidebar.markdown("**BLIP**: General purpose VQA with free-form answers")
|
113 |
+
st.sidebar.markdown("**ViLT**: Better for yes/no questions and specific categories")
|
114 |
+
|
115 |
+
# Main content - two columns
|
116 |
+
col1, col2 = st.columns([1, 1])
|
117 |
+
|
118 |
+
with col1:
|
119 |
+
st.markdown("### Upload & Ask")
|
120 |
+
uploaded_file = st.file_uploader(
|
121 |
+
"Upload an image:", type=["jpg", "jpeg", "png", "bmp", "gif"]
|
122 |
+
)
|
123 |
+
|
124 |
+
question = st.text_input(
|
125 |
+
"Your question about the image:", placeholder="E.g., What is in this image?"
|
126 |
+
)
|
127 |
+
|
128 |
+
submit_button = st.button(
|
129 |
+
"Get Answer", type="primary", use_container_width=True
|
130 |
+
)
|
131 |
+
|
132 |
+
# Preview uploaded image
|
133 |
+
if uploaded_file is not None:
|
134 |
+
st.markdown("### Image Preview")
|
135 |
+
st.image(uploaded_file, caption="Uploaded Image", use_column_width=True)
|
136 |
+
|
137 |
+
with col2:
|
138 |
+
st.markdown("### AI Answer")
|
139 |
+
|
140 |
+
# Process when submit button is clicked
|
141 |
+
if submit_button and uploaded_file is not None and question:
|
142 |
+
with st.spinner("Generating answer..."):
|
143 |
+
result = process_image_and_question(uploaded_file, question, model_name)
|
144 |
+
|
145 |
+
if result:
|
146 |
+
st.success("Answer generated successfully!")
|
147 |
+
|
148 |
+
# Display results
|
149 |
+
st.markdown("#### Question:")
|
150 |
+
st.write(question)
|
151 |
+
|
152 |
+
st.markdown("#### Answer:")
|
153 |
+
st.markdown(
|
154 |
+
f"<div style='background-color: #f0f2f6; padding: 20px; border-radius: 5px;'>{result['answer']}</div>",
|
155 |
+
unsafe_allow_html=True,
|
156 |
+
)
|
157 |
+
|
158 |
+
st.markdown("#### Processing Time:")
|
159 |
+
st.text(result["processing_time"])
|
160 |
+
else:
|
161 |
+
st.error(
|
162 |
+
"Failed to generate an answer. Please check the image and question, and try again."
|
163 |
+
)
|
164 |
+
|
165 |
+
elif not uploaded_file and submit_button:
|
166 |
+
st.warning("Please upload an image first.")
|
167 |
+
elif not question and submit_button:
|
168 |
+
st.warning("Please enter a question about the image.")
|
169 |
+
else:
|
170 |
+
st.info("AI answers will appear here after you submit your question")
|
171 |
+
|
172 |
+
# Information about the application
|
173 |
+
st.markdown("---")
|
174 |
+
st.markdown("### About Visual Question Answering")
|
175 |
+
st.markdown("""
|
176 |
+
This application uses multi-modal AI, combining computer vision and natural language processing
|
177 |
+
to answer questions about images. Here are some examples of questions you can ask:
|
178 |
+
|
179 |
+
- **Objects**: "What objects are in this image?"
|
180 |
+
- **Counting**: "How many people are in this image?"
|
181 |
+
- **Colors**: "What color is the car?"
|
182 |
+
- **Actions**: "What is the person doing?"
|
183 |
+
- **Spatial relations**: "What is to the left of the chair?"
|
184 |
+
- **Attributes**: "Is the cat sleeping?"
|
185 |
+
""")
|
186 |
+
|
187 |
+
|
188 |
+
if __name__ == "__main__":
|
189 |
+
main()
|
requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch>=2.0.0
|
2 |
+
torchvision>=0.15.0
|
3 |
+
transformers>=4.30.0
|
4 |
+
Pillow>=9.0.0
|
5 |
+
timm>=0.9.0
|
6 |
+
numpy>=1.24.0
|
7 |
+
tqdm>=4.65.0
|
8 |
+
streamlit>=1.34.0
|
9 |
+
watchdog>=3.0.0
|
10 |
+
python-dotenv>=1.0.0
|
run.py
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Visual Question Answering Application - Run Script for Streamlit
|
3 |
+
"""
|
4 |
+
|
5 |
+
import os
|
6 |
+
import subprocess
|
7 |
+
import sys
|
8 |
+
|
9 |
+
# Configure minimal environment settings
|
10 |
+
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3" # Suppress TensorFlow logging
|
11 |
+
|
12 |
+
|
13 |
+
def check_requirements_installed():
|
14 |
+
"""Check if requirements are installed"""
|
15 |
+
try:
|
16 |
+
import streamlit
|
17 |
+
import torch
|
18 |
+
import transformers
|
19 |
+
from PIL import Image
|
20 |
+
|
21 |
+
return True
|
22 |
+
except ImportError as e:
|
23 |
+
print(f"Error: Required package not installed - {e}")
|
24 |
+
print("Please install requirements using: pip install -r requirements.txt")
|
25 |
+
return False
|
26 |
+
|
27 |
+
|
28 |
+
def ensure_directories():
|
29 |
+
"""Ensure all required directories exist"""
|
30 |
+
# Get the base directory
|
31 |
+
base_dir = os.path.dirname(os.path.abspath(__file__))
|
32 |
+
|
33 |
+
# Create uploads directory
|
34 |
+
uploads_dir = os.path.join(base_dir, "static", "uploads")
|
35 |
+
os.makedirs(uploads_dir, exist_ok=True)
|
36 |
+
print(f"Uploads directory: {uploads_dir}")
|
37 |
+
|
38 |
+
# Create logs directory
|
39 |
+
logs_dir = os.path.join(base_dir, "logs")
|
40 |
+
os.makedirs(logs_dir, exist_ok=True)
|
41 |
+
|
42 |
+
|
43 |
+
def main():
|
44 |
+
"""Main function to run the application"""
|
45 |
+
print("Visual Question Answering - Multi-Modal AI Application with Streamlit")
|
46 |
+
|
47 |
+
# Check requirements
|
48 |
+
if not check_requirements_installed():
|
49 |
+
sys.exit(1)
|
50 |
+
|
51 |
+
# Ensure directories exist
|
52 |
+
ensure_directories()
|
53 |
+
|
54 |
+
# Set environment variables
|
55 |
+
os.environ["VQA_MODEL"] = os.environ.get(
|
56 |
+
"VQA_MODEL", "blip"
|
57 |
+
) # Default to 'blip' model
|
58 |
+
|
59 |
+
# Get the app.py path
|
60 |
+
app_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), "app.py")
|
61 |
+
if not os.path.exists(app_path):
|
62 |
+
print(f"Error: Streamlit app not found at {app_path}")
|
63 |
+
sys.exit(1)
|
64 |
+
|
65 |
+
# Print startup information
|
66 |
+
port = int(os.environ.get("PORT", 8501)) # Streamlit default port is 8501
|
67 |
+
print(f"Starting VQA application on http://localhost:{port}")
|
68 |
+
print(f"Using VQA model: {os.environ.get('VQA_MODEL', 'blip')}")
|
69 |
+
print("Press Ctrl+C to exit")
|
70 |
+
|
71 |
+
# Run the Streamlit app
|
72 |
+
cmd = [
|
73 |
+
"streamlit",
|
74 |
+
"run",
|
75 |
+
app_path,
|
76 |
+
"--server.port",
|
77 |
+
str(port),
|
78 |
+
"--server.address",
|
79 |
+
"0.0.0.0",
|
80 |
+
]
|
81 |
+
try:
|
82 |
+
subprocess.run(cmd)
|
83 |
+
except KeyboardInterrupt:
|
84 |
+
print("\nShutting down the application...")
|
85 |
+
except Exception as e:
|
86 |
+
print(f"Error launching Streamlit: {e}")
|
87 |
+
|
88 |
+
|
89 |
+
if __name__ == "__main__":
|
90 |
+
main()
|