Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
+
from PIL import Image, ImageDraw, ImageFont
|
4 |
+
|
5 |
+
# Load the YOLOS object detection model
|
6 |
+
detector = pipeline("object-detection", model="hustvl/yolos-small")
|
7 |
+
|
8 |
+
# Define some colors to differentiate classes
|
9 |
+
COLORS = ["red", "blue", "green", "orange", "purple", "yellow", "cyan", "magenta"]
|
10 |
+
|
11 |
+
# Helper function to assign color per label
|
12 |
+
def get_color_for_label(label):
|
13 |
+
return COLORS[hash(label) % len(COLORS)]
|
14 |
+
|
15 |
+
# Main function: detect, draw, and return outputs
|
16 |
+
def detect_and_draw(image, threshold):
|
17 |
+
try:
|
18 |
+
# Perform object detection
|
19 |
+
results = detector(image)
|
20 |
+
image = image.convert("RGB")
|
21 |
+
draw = ImageDraw.Draw(image)
|
22 |
+
|
23 |
+
# Try to load a font for annotations, else use default
|
24 |
+
try:
|
25 |
+
font = ImageFont.truetype("arial.ttf", 16)
|
26 |
+
except:
|
27 |
+
font = ImageFont.load_default()
|
28 |
+
|
29 |
+
annotations = []
|
30 |
+
|
31 |
+
for obj in results:
|
32 |
+
score = obj["score"]
|
33 |
+
if score < threshold:
|
34 |
+
continue
|
35 |
+
|
36 |
+
label = f"{obj['label']} ({score:.2f})"
|
37 |
+
box = obj["box"]
|
38 |
+
color = get_color_for_label(obj["label"])
|
39 |
+
|
40 |
+
# Draw the bounding box and label
|
41 |
+
draw.rectangle(
|
42 |
+
[(box["xmin"], box["ymin"]), (box["xmax"], box["ymax"])],
|
43 |
+
outline=color,
|
44 |
+
width=3,
|
45 |
+
)
|
46 |
+
|
47 |
+
draw.text((box["xmin"] + 5, box["ymin"] + 5), label, fill=color, font=font)
|
48 |
+
|
49 |
+
box_coords = (box["xmin"], box["ymin"], box["xmax"], box["ymax"])
|
50 |
+
annotations.append((box_coords, label))
|
51 |
+
|
52 |
+
return image, annotations
|
53 |
+
|
54 |
+
except Exception as e:
|
55 |
+
return f"Error during detection: {e}", None
|
56 |
+
|
57 |
+
# Gradio UI setup
|
58 |
+
demo = gr.Interface(
|
59 |
+
fn=detect_and_draw,
|
60 |
+
inputs=[
|
61 |
+
gr.Image(type="pil", label="Upload Image"),
|
62 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.5, step=0.05, label="Confidence Threshold"),
|
63 |
+
],
|
64 |
+
outputs=[
|
65 |
+
gr.AnnotatedImage(label="Detected Image"),
|
66 |
+
],
|
67 |
+
title="YOLOS Object Detection",
|
68 |
+
description="Upload an image to detect objects using the YOLOS-small model. Adjust the confidence threshold using the slider.",
|
69 |
+
live=True
|
70 |
+
)
|
71 |
+
|
72 |
+
demo.launch()
|