Spaces:
Running
Running
import gradio as gr | |
from transformers import pipeline | |
from PIL import Image, ImageDraw, ImageFont | |
# Load the YOLOS object detection model | |
detector = pipeline("object-detection", model="hustvl/yolos-small") | |
# Define some colors to differentiate classes | |
COLORS = ["red", "blue", "green", "orange", "purple", "yellow", "cyan", "magenta"] | |
# Helper function to assign color per label | |
def get_color_for_label(label): | |
return COLORS[hash(label) % len(COLORS)] | |
# Main function: detect, draw, and return outputs | |
def detect_and_draw(image, threshold): | |
results = detector(image) | |
image = image.convert("RGB") | |
draw = ImageDraw.Draw(image) | |
try: | |
font = ImageFont.truetype("arial.ttf", 16) | |
except: | |
font = ImageFont.load_default() | |
annotations = [] | |
for obj in results: | |
score = obj["score"] | |
if score < threshold: | |
continue | |
label = f"{obj['label']} ({score:.2f})" | |
box = obj["box"] | |
color = get_color_for_label(obj["label"]) | |
draw.rectangle( | |
[(box["xmin"], box["ymin"]), (box["xmax"], box["ymax"])], | |
outline=color, | |
width=3, | |
) | |
draw.text((box["xmin"] + 5, box["ymin"] + 5), label, fill=color, font=font) | |
box_coords = (box["xmin"], box["ymin"], box["xmax"], box["ymax"]) | |
annotations.append((box_coords, label)) | |
# Return the annotated image and annotations (no download option) | |
return image, annotations | |
# Gradio UI setup | |
demo = gr.Interface( | |
fn=detect_and_draw, | |
inputs=[ | |
gr.Image(type="pil", label="Upload Image"), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.5, step=0.05, label="Confidence Threshold"), | |
], | |
outputs=[ | |
gr.AnnotatedImage(label="Detected Image"), | |
], | |
title="YOLOS Object Detection", | |
description="Upload an image to detect objects using the YOLOS-small model. Adjust the confidence threshold using the slider.", | |
) | |
demo.launch() |