Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
from fastapi import FastAPI
|
|
|
2 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
import torch
|
4 |
|
@@ -8,13 +9,17 @@ app = FastAPI()
|
|
8 |
tokenizer = AutoTokenizer.from_pretrained("unsloth/Llama-3.2-1B-Instruct")
|
9 |
model = AutoModelForCausalLM.from_pretrained("unsloth/Llama-3.2-1B-Instruct").to("cpu")
|
10 |
|
|
|
|
|
|
|
|
|
11 |
@app.get("/")
|
12 |
def home():
|
13 |
return {"message": "FastAPI running with Llama-3.2-1B-Instruct"}
|
14 |
|
15 |
@app.post("/generate")
|
16 |
-
def generate_text(
|
17 |
-
inputs = tokenizer(prompt, return_tensors="pt").to("cpu")
|
18 |
output = model.generate(**inputs, max_length=300)
|
19 |
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
20 |
-
return {"generated_text": generated_text}
|
|
|
1 |
from fastapi import FastAPI
|
2 |
+
from pydantic import BaseModel # Import BaseModel untuk mendefinisikan model data
|
3 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
import torch
|
5 |
|
|
|
9 |
tokenizer = AutoTokenizer.from_pretrained("unsloth/Llama-3.2-1B-Instruct")
|
10 |
model = AutoModelForCausalLM.from_pretrained("unsloth/Llama-3.2-1B-Instruct").to("cpu")
|
11 |
|
12 |
+
# Definisikan model data untuk body JSON
|
13 |
+
class GenerateRequest(BaseModel):
|
14 |
+
prompt: str
|
15 |
+
|
16 |
@app.get("/")
|
17 |
def home():
|
18 |
return {"message": "FastAPI running with Llama-3.2-1B-Instruct"}
|
19 |
|
20 |
@app.post("/generate")
|
21 |
+
def generate_text(request: GenerateRequest): # Gunakan model data sebagai parameter
|
22 |
+
inputs = tokenizer(request.prompt, return_tensors="pt").to("cpu") # Ambil prompt dari request
|
23 |
output = model.generate(**inputs, max_length=300)
|
24 |
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
25 |
+
return {"generated_text": generated_text}
|