Spaces:
Running
on
T4
Running
on
T4
import gradio as gr | |
import modin.pandas as pd | |
import torch | |
import numpy as np | |
from PIL import Image | |
from diffusers import DiffusionPipeline | |
from huggingface_hub import login | |
#import os | |
#login(token=os.environ.get('HF_KEY')) | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", torch_dtype=torch.float16) if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0") | |
pipe = pipe.to(device) | |
# ok | |
def infer(prompt, source_image, negative_prompt, guide, steps, seed, Strength): | |
seed = int(seed) | |
generator = torch.Generator(device).manual_seed(seed) | |
if not isinstance(source_image, Image.Image): | |
source_image = Image.open(source_image).convert("RGB") | |
image = pipe(prompt, negative_prompt=negative_prompt, image=source_image, strength=Strength, guidance_scale=guide, num_inference_steps=steps).images[0] | |
return image | |
gr.Interface(fn=infer, inputs=[gr.Text(label="Prompt"), gr.Image(label="Initial Image", type="pil"), gr.Text(label="Prompt"), gr.Slider(2, 15, value = 7, label = 'Guidance Scale'), | |
gr.Slider(1, 25, value = 10, step = 1, label = 'Number of Iterations'), | |
gr.Slider(label = "Seed", minimum = 0, maximum = 987654321987654321, step = 1, randomize = True), | |
gr.Slider(label='Strength', minimum = 0, maximum = 1, step = .05, value = .5)], | |
outputs='image', title = "Stable Diffusion XL 1.0 Image to Image Pipeline CPU", description = "For more information on Stable Diffusion XL 1.0 see https://huggingface.co/stabilityai/stable-diffusion-xl-refiner-1.0 <br><br>Upload an Image (<b>MUST Be .PNG and 512x512 or 768x768</b>) enter a Prompt, or let it just do its Thing, then click submit. 10 Iterations takes about ~900-1200 seconds currently. For more informationon about Stable Diffusion or Suggestions for prompts, keywords, artists or styles see https://github.com/Maks-s/sd-akashic", article = "CuongTran").queue(max_size=5).launch(share=True) |