Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -18,23 +18,28 @@ def load_words_dataset():
|
|
18 |
dataset = load_dataset("marksverdhei/wordnet-definitions-en-2021", split="train")
|
19 |
return dataset["Word"]
|
20 |
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
|
29 |
|
30 |
all_words = load_words_dataset()
|
31 |
|
32 |
model = load_model()
|
33 |
|
34 |
-
|
35 |
|
36 |
|
37 |
-
secret_word =
|
38 |
secret_embedding = model.encode(secret_word)
|
39 |
|
40 |
print("Secret word ", secret_word)
|
@@ -52,8 +57,7 @@ if 'words_umap_df' not in st.session_state:
|
|
52 |
"s": [],
|
53 |
"l": [],
|
54 |
})
|
55 |
-
|
56 |
-
secret_embedding_3d = [0, 1, 2]
|
57 |
words_umap_df.loc[len(words_umap_df)] = {
|
58 |
"x": secret_embedding_3d[0],
|
59 |
"y": secret_embedding_3d[1],
|
@@ -82,8 +86,7 @@ if st.button("Guess") or word:
|
|
82 |
).cpu().numpy()[0][0]
|
83 |
st.session_state['words'].append((str(word), similarity))
|
84 |
|
85 |
-
|
86 |
-
pt = [0, 1, 2]
|
87 |
words_umap_df = st.session_state['words_umap_df']
|
88 |
words_umap_df.loc[len(words_umap_df)] = {
|
89 |
"x": pt[0],
|
|
|
18 |
dataset = load_dataset("marksverdhei/wordnet-definitions-en-2021", split="train")
|
19 |
return dataset["Word"]
|
20 |
|
21 |
+
@st.cache_data
|
22 |
+
def choose_secret_word():
|
23 |
+
all_words = load_words_dataset()
|
24 |
+
return random.choice(all_words)
|
25 |
+
|
26 |
|
27 |
+
@st.cache_resource
|
28 |
+
def prepare_umap():
|
29 |
+
all_enc = model.encode(all_words)
|
30 |
+
umap_3d = UMAP(n_components=3, init='random', random_state=0)
|
31 |
+
proj_3d = umap_3d.fit_transform(random.sample(all_enc.tolist(), k=1000))
|
32 |
+
return umap_3d
|
33 |
|
34 |
|
35 |
all_words = load_words_dataset()
|
36 |
|
37 |
model = load_model()
|
38 |
|
39 |
+
umap_3d = prepare_umap()
|
40 |
|
41 |
|
42 |
+
secret_word =choose_secret_word()
|
43 |
secret_embedding = model.encode(secret_word)
|
44 |
|
45 |
print("Secret word ", secret_word)
|
|
|
57 |
"s": [],
|
58 |
"l": [],
|
59 |
})
|
60 |
+
secret_embedding_3d = umap_3d.transform([secret_embedding])[0]
|
|
|
61 |
words_umap_df.loc[len(words_umap_df)] = {
|
62 |
"x": secret_embedding_3d[0],
|
63 |
"y": secret_embedding_3d[1],
|
|
|
86 |
).cpu().numpy()[0][0]
|
87 |
st.session_state['words'].append((str(word), similarity))
|
88 |
|
89 |
+
pt = umap_3d.transform([word_embedding])[0]
|
|
|
90 |
words_umap_df = st.session_state['words_umap_df']
|
91 |
words_umap_df.loc[len(words_umap_df)] = {
|
92 |
"x": pt[0],
|