Allob commited on
Commit
91b81a0
·
1 Parent(s): 4168128

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +15 -12
app.py CHANGED
@@ -18,23 +18,28 @@ def load_words_dataset():
18
  dataset = load_dataset("marksverdhei/wordnet-definitions-en-2021", split="train")
19
  return dataset["Word"]
20
 
 
 
 
 
 
21
 
22
- # @st.cache_resource
23
- # def prepare_umap():
24
- # all_enc = model.encode(all_words)
25
- # umap_3d = UMAP(n_components=3, init='random', random_state=0)
26
- # proj_3d = umap_3d.fit_transform(random.sample(all_enc.tolist(), k=2000))
27
- # return umap_3d
28
 
29
 
30
  all_words = load_words_dataset()
31
 
32
  model = load_model()
33
 
34
- #umap_3d = prepare_umap()
35
 
36
 
37
- secret_word = random.choice(all_words)
38
  secret_embedding = model.encode(secret_word)
39
 
40
  print("Secret word ", secret_word)
@@ -52,8 +57,7 @@ if 'words_umap_df' not in st.session_state:
52
  "s": [],
53
  "l": [],
54
  })
55
- #secret_embedding_3d = umap_3d.transform([secret_embedding])[0]
56
- secret_embedding_3d = [0, 1, 2]
57
  words_umap_df.loc[len(words_umap_df)] = {
58
  "x": secret_embedding_3d[0],
59
  "y": secret_embedding_3d[1],
@@ -82,8 +86,7 @@ if st.button("Guess") or word:
82
  ).cpu().numpy()[0][0]
83
  st.session_state['words'].append((str(word), similarity))
84
 
85
- #pt = umap_3d.transform([word_embedding])[0]
86
- pt = [0, 1, 2]
87
  words_umap_df = st.session_state['words_umap_df']
88
  words_umap_df.loc[len(words_umap_df)] = {
89
  "x": pt[0],
 
18
  dataset = load_dataset("marksverdhei/wordnet-definitions-en-2021", split="train")
19
  return dataset["Word"]
20
 
21
+ @st.cache_data
22
+ def choose_secret_word():
23
+ all_words = load_words_dataset()
24
+ return random.choice(all_words)
25
+
26
 
27
+ @st.cache_resource
28
+ def prepare_umap():
29
+ all_enc = model.encode(all_words)
30
+ umap_3d = UMAP(n_components=3, init='random', random_state=0)
31
+ proj_3d = umap_3d.fit_transform(random.sample(all_enc.tolist(), k=1000))
32
+ return umap_3d
33
 
34
 
35
  all_words = load_words_dataset()
36
 
37
  model = load_model()
38
 
39
+ umap_3d = prepare_umap()
40
 
41
 
42
+ secret_word =choose_secret_word()
43
  secret_embedding = model.encode(secret_word)
44
 
45
  print("Secret word ", secret_word)
 
57
  "s": [],
58
  "l": [],
59
  })
60
+ secret_embedding_3d = umap_3d.transform([secret_embedding])[0]
 
61
  words_umap_df.loc[len(words_umap_df)] = {
62
  "x": secret_embedding_3d[0],
63
  "y": secret_embedding_3d[1],
 
86
  ).cpu().numpy()[0][0]
87
  st.session_state['words'].append((str(word), similarity))
88
 
89
+ pt = umap_3d.transform([word_embedding])[0]
 
90
  words_umap_df = st.session_state['words_umap_df']
91
  words_umap_df.loc[len(words_umap_df)] = {
92
  "x": pt[0],