Allob commited on
Commit
0b6790a
·
1 Parent(s): f2e9695

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +12 -9
app.py CHANGED
@@ -2,6 +2,7 @@ import streamlit as st
2
  import plotly.express as px
3
  import pandas as pd
4
  import random
 
5
  from umap import UMAP
6
  from sentence_transformers import SentenceTransformer, util
7
  from datasets import load_dataset
@@ -18,19 +19,19 @@ def load_words_dataset():
18
  return dataset["Word"]
19
 
20
 
21
- @st.cache_resource
22
- def prepare_umap():
23
- all_enc = model.encode(all_words)
24
- umap_3d = UMAP(n_components=3, init='random', random_state=0)
25
- proj_3d = umap_3d.fit_transform(random.sample(all_enc.tolist(), k=2000))
26
- return umap_3d
27
 
28
 
29
  all_words = load_words_dataset()
30
 
31
  model = load_model()
32
 
33
- umap_3d = prepare_umap()
34
 
35
 
36
  secret_word = random.choice(all_words)
@@ -49,7 +50,8 @@ if 'words_umap_df' not in st.session_state:
49
  "s": [],
50
  "l": [],
51
  })
52
- secret_embedding_3d = umap_3d.transform([secret_embedding])[0]
 
53
  words_umap_df.loc[len(words_umap_df)] = {
54
  "x": secret_embedding_3d[0],
55
  "y": secret_embedding_3d[1],
@@ -78,7 +80,8 @@ if st.button("Guess") or word:
78
  ).cpu().numpy()[0][0]
79
  st.session_state['words'].append((str(word), similarity))
80
 
81
- pt = umap_3d.transform([word_embedding])[0]
 
82
  words_umap_df = st.session_state['words_umap_df']
83
  words_umap_df.loc[len(words_umap_df)] = {
84
  "x": pt[0],
 
2
  import plotly.express as px
3
  import pandas as pd
4
  import random
5
+ import logging
6
  from umap import UMAP
7
  from sentence_transformers import SentenceTransformer, util
8
  from datasets import load_dataset
 
19
  return dataset["Word"]
20
 
21
 
22
+ # @st.cache_resource
23
+ # def prepare_umap():
24
+ # all_enc = model.encode(all_words)
25
+ # umap_3d = UMAP(n_components=3, init='random', random_state=0)
26
+ # proj_3d = umap_3d.fit_transform(random.sample(all_enc.tolist(), k=2000))
27
+ # return umap_3d
28
 
29
 
30
  all_words = load_words_dataset()
31
 
32
  model = load_model()
33
 
34
+ #umap_3d = prepare_umap()
35
 
36
 
37
  secret_word = random.choice(all_words)
 
50
  "s": [],
51
  "l": [],
52
  })
53
+ #secret_embedding_3d = umap_3d.transform([secret_embedding])[0]
54
+ secret_embedding_3d = [0, 1, 2]
55
  words_umap_df.loc[len(words_umap_df)] = {
56
  "x": secret_embedding_3d[0],
57
  "y": secret_embedding_3d[1],
 
80
  ).cpu().numpy()[0][0]
81
  st.session_state['words'].append((str(word), similarity))
82
 
83
+ #pt = umap_3d.transform([word_embedding])[0]
84
+ pt = [0, 1, 2]
85
  words_umap_df = st.session_state['words_umap_df']
86
  words_umap_df.loc[len(words_umap_df)] = {
87
  "x": pt[0],