Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,6 +2,7 @@ import streamlit as st
|
|
2 |
import plotly.express as px
|
3 |
import pandas as pd
|
4 |
import random
|
|
|
5 |
from umap import UMAP
|
6 |
from sentence_transformers import SentenceTransformer, util
|
7 |
from datasets import load_dataset
|
@@ -18,19 +19,19 @@ def load_words_dataset():
|
|
18 |
return dataset["Word"]
|
19 |
|
20 |
|
21 |
-
@st.cache_resource
|
22 |
-
def prepare_umap():
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
|
28 |
|
29 |
all_words = load_words_dataset()
|
30 |
|
31 |
model = load_model()
|
32 |
|
33 |
-
umap_3d = prepare_umap()
|
34 |
|
35 |
|
36 |
secret_word = random.choice(all_words)
|
@@ -49,7 +50,8 @@ if 'words_umap_df' not in st.session_state:
|
|
49 |
"s": [],
|
50 |
"l": [],
|
51 |
})
|
52 |
-
secret_embedding_3d = umap_3d.transform([secret_embedding])[0]
|
|
|
53 |
words_umap_df.loc[len(words_umap_df)] = {
|
54 |
"x": secret_embedding_3d[0],
|
55 |
"y": secret_embedding_3d[1],
|
@@ -78,7 +80,8 @@ if st.button("Guess") or word:
|
|
78 |
).cpu().numpy()[0][0]
|
79 |
st.session_state['words'].append((str(word), similarity))
|
80 |
|
81 |
-
pt = umap_3d.transform([word_embedding])[0]
|
|
|
82 |
words_umap_df = st.session_state['words_umap_df']
|
83 |
words_umap_df.loc[len(words_umap_df)] = {
|
84 |
"x": pt[0],
|
|
|
2 |
import plotly.express as px
|
3 |
import pandas as pd
|
4 |
import random
|
5 |
+
import logging
|
6 |
from umap import UMAP
|
7 |
from sentence_transformers import SentenceTransformer, util
|
8 |
from datasets import load_dataset
|
|
|
19 |
return dataset["Word"]
|
20 |
|
21 |
|
22 |
+
# @st.cache_resource
|
23 |
+
# def prepare_umap():
|
24 |
+
# all_enc = model.encode(all_words)
|
25 |
+
# umap_3d = UMAP(n_components=3, init='random', random_state=0)
|
26 |
+
# proj_3d = umap_3d.fit_transform(random.sample(all_enc.tolist(), k=2000))
|
27 |
+
# return umap_3d
|
28 |
|
29 |
|
30 |
all_words = load_words_dataset()
|
31 |
|
32 |
model = load_model()
|
33 |
|
34 |
+
#umap_3d = prepare_umap()
|
35 |
|
36 |
|
37 |
secret_word = random.choice(all_words)
|
|
|
50 |
"s": [],
|
51 |
"l": [],
|
52 |
})
|
53 |
+
#secret_embedding_3d = umap_3d.transform([secret_embedding])[0]
|
54 |
+
secret_embedding_3d = [0, 1, 2]
|
55 |
words_umap_df.loc[len(words_umap_df)] = {
|
56 |
"x": secret_embedding_3d[0],
|
57 |
"y": secret_embedding_3d[1],
|
|
|
80 |
).cpu().numpy()[0][0]
|
81 |
st.session_state['words'].append((str(word), similarity))
|
82 |
|
83 |
+
#pt = umap_3d.transform([word_embedding])[0]
|
84 |
+
pt = [0, 1, 2]
|
85 |
words_umap_df = st.session_state['words_umap_df']
|
86 |
words_umap_df.loc[len(words_umap_df)] = {
|
87 |
"x": pt[0],
|