import streamlit as st import random from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer import torch import io from pdfminer.pdfinterp import PDFResourceManager, PDFPageInterpreter from pdfminer.converter import TextConverter from pdfminer.layout import LAParams from pdfminer.pdfpage import PDFPage from docx import Document # --- Streamlit Page Configuration --- st.set_page_config(page_title="AI & Plagiarism Detection", page_icon="🔍", layout="wide") # --- DeepSeek Theme --- DEEPSEEK_THEME = { "backgroundColor": "#282c34", "textColor": "#abb2bf", "inputAreaColor": "#3E4451", "accentColor": "#61afef", "sidebarColor": "#21252b", "font": "sans-serif", } # --- Function to Apply Theme --- def apply_theme(theme): st.markdown(f""" """, unsafe_allow_html=True) # --- Helper Functions --- def extract_text_from_pdf(pdf_file): resource_manager = PDFResourceManager() output_string = io.StringIO() laparams = LAParams() device = TextConverter(resource_manager, output_string, laparams=laparams) interpreter = PDFPageInterpreter(resource_manager, device) for page in PDFPage.get_pages(pdf_file, caching=True, check_extractable=True): interpreter.process_page(page) text = output_string.getvalue() device.close() output_string.close() return text def extract_text_from_docx(docx_file): doc = Document(docx_file) full_text = [] for paragraph in doc.paragraphs: full_text.append(paragraph.text) return '\n'.join(full_text) def split_text_into_chunks(text, tokenizer, max_length=512): chunks = [] tokens = tokenizer.tokenize(text) for i in range(0, len(tokens), max_length): chunk_tokens = tokens[i:i + max_length] chunk_text = tokenizer.convert_tokens_to_string(chunk_tokens) chunks.append(chunk_text) return chunks @st.cache_resource def load_ai_detection_model(model_name="Hello-SimpleAI/chatgpt-detector-roberta"): try: ai_detection = pipeline("text-classification", model=model_name, truncation=True, max_length=512) return ai_detection except Exception as e: st.error(f"Error loading AI detection model: {e}") return None @st.cache_resource def load_plagiarism_model(model_name="jpwahle/longformer-base-plagiarism-detection"): try: tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) return tokenizer, model except Exception as e: st.error(f"Error loading plagiarism detection model: {e}") return None def detect_ai_content(text_chunks, ai_detection_model, ai_threshold=0.4): try: ai_percentages = [] for chunk in text_chunks: result = ai_detection_model(chunk) ai_label = result[0]['label'] ai_score = result[0]['score'] if ai_label == 'AI' and ai_score > ai_threshold: ai_percentages.append(ai_score) elif ai_label == 'Human' and ai_score < (1 - ai_threshold): ai_percentages.append(0) else: ai_percentages.append(0) return ai_percentages except Exception as e: st.error(f"Error during AI content detection: {e}") return None def plagiarism_check(text_chunks, tokenizer, model): try: plagiarized_count = 0 for chunk in text_chunks: inputs = tokenizer(chunk, return_tensors="pt", truncation=True, padding=True, max_length=512) with torch.no_grad(): outputs = model(**inputs) predicted_class = torch.argmax(outputs.logits, dim=-1).item() if predicted_class == 1: plagiarized_count += 1 plagiarism_percentage = (plagiarized_count / len(text_chunks)) * 100 return plagiarism_percentage except Exception as e: st.error(f"Error during plagiarism detection: {e}") return None # --- Main Function --- def main(): # --- Apply DeepSeek Theme --- apply_theme(DEEPSEEK_THEME) # --- Sidebar --- with st.sidebar: st.markdown("

AI & Plagiarism

", unsafe_allow_html=True) st.markdown("Navigation") menu_options = ["New Chat"] # Removed "My Profile" and "Get App" selected_option = st.radio("Choose an option", menu_options) st.markdown("---") st.markdown("Today") recent_chats = ["Chat 1", "Chat 2", "Chat 3"] for chat in recent_chats: st.markdown(f"- {chat}") # --- Main Content --- col1, col2 = st.columns([1, 3]) # Adjust the ratio as needed with col2: st.markdown("

Hi, I'm AI & Plagiarism Assistant.

", unsafe_allow_html=True) st.markdown("How can I help you today?") # --- Input Area: Text Area and File Upload --- input_text = st.text_area("Message", "", height=200) uploaded_files = st.file_uploader("Attach documents (PDF or DOCX)", type=["pdf", "docx"], accept_multiple_files=True) # --- Load models --- ai_detection_model, tokenizer, plagiarism_model = load_models() # --- Process Input --- if input_text or uploaded_files: raw_text = "" # --- Process Uploaded Files --- if uploaded_files: with st.expander("Uploaded Files", expanded=False): for uploaded_file in uploaded_files: file_size = len(uploaded_file.getvalue()) if file_size > 1000000000: st.error(f"{uploaded_file.name}: File size exceeds the 1GB limit.") continue try: if uploaded_file.type == "application/pdf": extracted_text = extract_text_from_pdf(uploaded_file) raw_text += extracted_text + "\n" st.write(f"Extracted text from {uploaded_file.name}") elif uploaded_file.type == "application/vnd.openxmlformats-officedocument.wordprocessingml.document": extracted_text = extract_text_from_docx(uploaded_file) raw_text += extracted_text + "\n" st.write(f"Extracted text from {uploaded_file.name}") else: st.error(f"{uploaded_file.name}: Unsupported file type") continue except Exception as e: st.error(f"Error processing {uploaded_file.name}: {e}") continue # --- Append Manual Text --- raw_text += input_text.strip() # --- Split text into manageable chunks --- text_chunks = split_text_into_chunks(raw_text.strip(), tokenizer) # --- Process and Display Results --- process_and_display(text_chunks, "Combined Input", ai_detection_model, tokenizer, plagiarism_model) # --- Helper function to process text and display results --- def process_and_display(text_chunks, source_name, ai_detection_model, tokenizer, plagiarism_model): # AI Detection ai_percentage_avg = None human_percentage = None if ai_detection_model: ai_percentages = detect_ai_content(text_chunks, ai_detection_model) if ai_percentages: ai_percentage_avg = sum(ai_percentages) / len(ai_percentages) * 100 human_percentage = 100 - ai_percentage_avg # Plagiarism Check plagiarism_percentage = None if tokenizer and plagiarism_model: plagiarism_percentage = plagiarism_check(text_chunks, tokenizer, plagiarism_model) # --- Tiled Output --- with st.container(): st.markdown(f"

{source_name}

", unsafe_allow_html=True) col1, col2 = st.columns(2) with col1: st.markdown("

AI Detection:

", unsafe_allow_html=True) if ai_percentage_avg is not None: st.metric(label="AI Content", value=f"{ai_percentage_avg:.2f}%", delta="AI Generated") st.metric(label="Human Written", value=f"{human_percentage:.2f}%", delta="Humanized Text") else: st.write("AI Detection not available") with col2: st.markdown("

Plagiarism Detection:

", unsafe_allow_html=True) if plagiarism_percentage is not None: st.metric(label="Plagiarism", value=f"{plagiarism_percentage:.2f}%", delta="Plagiarized" if plagiarism_percentage > 0 else "Original") else: st.write("Plagiarism Detection not available") # --- Load models globally --- @st.cache_resource def load_models(): ai_detection_model = load_ai_detection_model() tokenizer, plagiarism_model = load_plagiarism_model() return ai_detection_model, tokenizer, plagiarism_model # --- Call Main --- if __name__ == "__main__": ai_detection_model, tokenizer, plagiarism_model = load_models() main()