Spaces:
Sleeping
Sleeping
File size: 11,099 Bytes
20be0fa ecdb175 3ef7501 4d2cd01 fa4f2b7 7a02768 ecdb175 721c502 ecdb175 7a02768 ecdb175 77f8cb9 7a02768 77f8cb9 721c502 7a02768 721c502 7a02768 170516a 721c502 7a02768 170516a ecdb175 7a02768 ecdb175 77f8cb9 3ef7501 fa4f2b7 4d2cd01 77f8cb9 20be0fa 7a02768 5519f66 7a02768 170516a 7a02768 633c7f5 7a02768 721c502 7a02768 f08423d 7a02768 f08423d 633c7f5 fa4f2b7 20be0fa 170516a 20be0fa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 |
import streamlit as st
import random
from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer
import torch
import io
from pdfminer.pdfinterp import PDFResourceManager, PDFPageInterpreter
from pdfminer.converter import TextConverter
from pdfminer.layout import LAParams
from pdfminer.pdfpage import PDFPage
from docx import Document
# --- Streamlit Page Configuration ---
st.set_page_config(page_title="AI & Plagiarism Detection", page_icon="π", layout="wide")
# --- DeepSeek Theme ---
DEEPSEEK_THEME = {
"backgroundColor": "#282c34",
"textColor": "#abb2bf",
"inputAreaColor": "#3E4451",
"accentColor": "#61afef",
"sidebarColor": "#21252b",
"font": "sans-serif",
}
# --- Function to Apply Theme ---
def apply_theme(theme):
st.markdown(f"""
<style>
body {{
color: {theme["textColor"]};
background-color: {theme["backgroundColor"]};
font-family: {theme["font"]};
}}
.welcome-text {{
color: {theme["textColor"]};
font-size: 36px;
font-weight: bold;
text-align: center;
margin-bottom: 20px;
}}
.output-box {{
background-color: {theme["inputAreaColor"]};
color: {theme["textColor"]};
padding: 10px;
border-radius: 5px;
margin-top: 20px;
}}
.stTextArea textarea {{
background-color: {theme["inputAreaColor"]};
color: {theme["textColor"]};
border: 1px solid {theme["accentColor"]};
border-radius: 5px;
}}
.stFileUploader > div > div:nth-child(1) > div > button {{
background-color: {theme["accentColor"]};
color: {theme["backgroundColor"]};
border-radius: 5px;
}}
.stMetricLabel {{
color: {theme["textColor"]} !important;
}}
.stMetricValue {{
color: {theme["textColor"]} !important;
}}
.streamlit-expanderHeader {{
color: {theme["textColor"]};
}}
.streamlit-expanderContent {{
color: {theme["textColor"]};
}}
[data-testid="stSidebar"] {{
background-color: {theme["sidebarColor"]};
color: {theme["textColor"]};
}}
</style>
""", unsafe_allow_html=True)
# --- Helper Functions ---
def extract_text_from_pdf(pdf_file):
resource_manager = PDFResourceManager()
output_string = io.StringIO()
laparams = LAParams()
device = TextConverter(resource_manager, output_string, laparams=laparams)
interpreter = PDFPageInterpreter(resource_manager, device)
for page in PDFPage.get_pages(pdf_file, caching=True, check_extractable=True):
interpreter.process_page(page)
text = output_string.getvalue()
device.close()
output_string.close()
return text
def extract_text_from_docx(docx_file):
doc = Document(docx_file)
full_text = []
for paragraph in doc.paragraphs:
full_text.append(paragraph.text)
return '\n'.join(full_text)
def split_text_into_chunks(text, tokenizer, max_length=512):
chunks = []
tokens = tokenizer.tokenize(text)
for i in range(0, len(tokens), max_length):
chunk_tokens = tokens[i:i + max_length]
chunk_text = tokenizer.convert_tokens_to_string(chunk_tokens)
chunks.append(chunk_text)
return chunks
@st.cache_resource
def load_ai_detection_model(model_name="Hello-SimpleAI/chatgpt-detector-roberta"):
try:
ai_detection = pipeline("text-classification", model=model_name, truncation=True, max_length=512)
return ai_detection
except Exception as e:
st.error(f"Error loading AI detection model: {e}")
return None
@st.cache_resource
def load_plagiarism_model(model_name="jpwahle/longformer-base-plagiarism-detection"):
try:
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
return tokenizer, model
except Exception as e:
st.error(f"Error loading plagiarism detection model: {e}")
return None
def detect_ai_content(text_chunks, ai_detection_model, ai_threshold=0.4):
try:
ai_percentages = []
for chunk in text_chunks:
result = ai_detection_model(chunk)
ai_label = result[0]['label']
ai_score = result[0]['score']
if ai_label == 'AI' and ai_score > ai_threshold:
ai_percentages.append(ai_score)
elif ai_label == 'Human' and ai_score < (1 - ai_threshold):
ai_percentages.append(0)
else:
ai_percentages.append(0)
return ai_percentages
except Exception as e:
st.error(f"Error during AI content detection: {e}")
return None
def plagiarism_check(text_chunks, tokenizer, model):
try:
plagiarized_count = 0
for chunk in text_chunks:
inputs = tokenizer(chunk, return_tensors="pt", truncation=True, padding=True, max_length=512)
with torch.no_grad():
outputs = model(**inputs)
predicted_class = torch.argmax(outputs.logits, dim=-1).item()
if predicted_class == 1:
plagiarized_count += 1
plagiarism_percentage = (plagiarized_count / len(text_chunks)) * 100
return plagiarism_percentage
except Exception as e:
st.error(f"Error during plagiarism detection: {e}")
return None
# --- Main Function ---
def main():
# --- Apply DeepSeek Theme ---
apply_theme(DEEPSEEK_THEME)
# --- Sidebar ---
with st.sidebar:
st.markdown("<h1 style='color:#61afef;'>AI & Plagiarism</h1>", unsafe_allow_html=True)
st.markdown("Navigation")
menu_options = ["New Chat"] # Removed "My Profile" and "Get App"
selected_option = st.radio("Choose an option", menu_options)
st.markdown("---")
st.markdown("Today")
recent_chats = ["Chat 1", "Chat 2", "Chat 3"]
for chat in recent_chats:
st.markdown(f"- {chat}")
# --- Main Content ---
col1, col2 = st.columns([1, 3]) # Adjust the ratio as needed
with col2:
st.markdown("<h1 class='welcome-text'>Hi, I'm AI & Plagiarism Assistant.</h1>", unsafe_allow_html=True)
st.markdown("How can I help you today?")
# --- Input Area: Text Area and File Upload ---
input_text = st.text_area("Message", "", height=200)
uploaded_files = st.file_uploader("Attach documents (PDF or DOCX)", type=["pdf", "docx"], accept_multiple_files=True)
# --- Load models ---
ai_detection_model, tokenizer, plagiarism_model = load_models()
# --- Process Input ---
if input_text or uploaded_files:
raw_text = ""
# --- Process Uploaded Files ---
if uploaded_files:
with st.expander("Uploaded Files", expanded=False):
for uploaded_file in uploaded_files:
file_size = len(uploaded_file.getvalue())
if file_size > 1000000000:
st.error(f"{uploaded_file.name}: File size exceeds the 1GB limit.")
continue
try:
if uploaded_file.type == "application/pdf":
extracted_text = extract_text_from_pdf(uploaded_file)
raw_text += extracted_text + "\n"
st.write(f"Extracted text from {uploaded_file.name}")
elif uploaded_file.type == "application/vnd.openxmlformats-officedocument.wordprocessingml.document":
extracted_text = extract_text_from_docx(uploaded_file)
raw_text += extracted_text + "\n"
st.write(f"Extracted text from {uploaded_file.name}")
else:
st.error(f"{uploaded_file.name}: Unsupported file type")
continue
except Exception as e:
st.error(f"Error processing {uploaded_file.name}: {e}")
continue
# --- Append Manual Text ---
raw_text += input_text.strip()
# --- Split text into manageable chunks ---
text_chunks = split_text_into_chunks(raw_text.strip(), tokenizer)
# --- Process and Display Results ---
process_and_display(text_chunks, "Combined Input", ai_detection_model, tokenizer, plagiarism_model)
# --- Helper function to process text and display results ---
def process_and_display(text_chunks, source_name, ai_detection_model, tokenizer, plagiarism_model):
# AI Detection
ai_percentage_avg = None
human_percentage = None
if ai_detection_model:
ai_percentages = detect_ai_content(text_chunks, ai_detection_model)
if ai_percentages:
ai_percentage_avg = sum(ai_percentages) / len(ai_percentages) * 100
human_percentage = 100 - ai_percentage_avg
# Plagiarism Check
plagiarism_percentage = None
if tokenizer and plagiarism_model:
plagiarism_percentage = plagiarism_check(text_chunks, tokenizer, plagiarism_model)
# --- Tiled Output ---
with st.container():
st.markdown(f"<div class='output-box'><h3>{source_name}</h3></div>", unsafe_allow_html=True)
col1, col2 = st.columns(2)
with col1:
st.markdown("<div class='output-box'><h4>AI Detection:</h4></div>", unsafe_allow_html=True)
if ai_percentage_avg is not None:
st.metric(label="AI Content", value=f"{ai_percentage_avg:.2f}%", delta="AI Generated")
st.metric(label="Human Written", value=f"{human_percentage:.2f}%", delta="Humanized Text")
else:
st.write("AI Detection not available")
with col2:
st.markdown("<div class='output-box'><h4>Plagiarism Detection:</h4></div>", unsafe_allow_html=True)
if plagiarism_percentage is not None:
st.metric(label="Plagiarism", value=f"{plagiarism_percentage:.2f}%", delta="Plagiarized" if plagiarism_percentage > 0 else "Original")
else:
st.write("Plagiarism Detection not available")
# --- Load models globally ---
@st.cache_resource
def load_models():
ai_detection_model = load_ai_detection_model()
tokenizer, plagiarism_model = load_plagiarism_model()
return ai_detection_model, tokenizer, plagiarism_model
# --- Call Main ---
if __name__ == "__main__":
ai_detection_model, tokenizer, plagiarism_model = load_models()
main()
|