Spaces:
Paused
Paused
File size: 28,383 Bytes
4f44506 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 |
import os
import itertools
import numpy as np
import torch
from PIL import Image, ImageOps
import cv2
import psutil
import subprocess
import re
import time
import folder_paths
from comfy.utils import common_upscale, ProgressBar
import nodes
from comfy.k_diffusion.utils import FolderOfImages
from .logger import logger
from .utils import BIGMAX, DIMMAX, calculate_file_hash, get_sorted_dir_files_from_directory,\
lazy_get_audio, hash_path, validate_path, strip_path, try_download_video, \
is_url, imageOrLatent, ffmpeg_path, ENCODE_ARGS, floatOrInt
video_extensions = ['webm', 'mp4', 'mkv', 'gif', 'mov']
VHSLoadFormats = {
'None': {},
'AnimateDiff': {'target_rate': 8, 'dim': (8,0,512,512)},
'Mochi': {'target_rate': 24, 'dim': (16,0,848,480), 'frames':(6,1)},
'LTXV': {'target_rate': 24, 'dim': (32,0,768,512), 'frames':(8,1)},
'Hunyuan': {'target_rate': 24, 'dim': (16,0,848,480), 'frames':(4,1)},
'Cosmos': {'target_rate': 24, 'dim': (16,0,1280,704), 'frames':(8,1)},
'Wan': {'target_rate': 16, 'dim': (8,0,832,480), 'frames':(4,1)},
}
"""
External plugins may add additional formats to nodes.VHSLoadFormats
In addition to shorthand options, direct widget names will map a given dict to options.
Adding a third arguement to a frames tuple can enable strict checks on number
of loaded frames, i.e (8,1,True)
"""
if not hasattr(nodes, 'VHSLoadFormats'):
nodes.VHSLoadFormats = {}
def get_load_formats():
#TODO: check if {**extra_config.VHSLoafFormats, **VHSLoadFormats} has minimum version
formats = {}
formats.update(nodes.VHSLoadFormats)
formats.update(VHSLoadFormats)
return (list(formats.keys()),
{'default': 'AnimateDiff', 'formats': formats})
def get_format(format):
if format in VHSLoadFormats:
return VHSLoadFormats[format]
return nodes.VHSLoadFormats.get(format, {})
def is_gif(filename) -> bool:
file_parts = filename.split('.')
return len(file_parts) > 1 and file_parts[-1] == "gif"
def target_size(width, height, custom_width, custom_height, downscale_ratio=8) -> tuple[int, int]:
if downscale_ratio is None:
downscale_ratio = 8
if custom_width == 0 and custom_height == 0:
pass
elif custom_height == 0:
height *= custom_width/width
width = custom_width
elif custom_width == 0:
width *= custom_height/height
height = custom_height
else:
width = custom_width
height = custom_height
width = int(width/downscale_ratio + 0.5) * downscale_ratio
height = int(height/downscale_ratio + 0.5) * downscale_ratio
return (width, height)
def cv_frame_generator(video, force_rate, frame_load_cap, skip_first_frames,
select_every_nth, meta_batch=None, unique_id=None):
video_cap = cv2.VideoCapture(video)
if not video_cap.isOpened() or not video_cap.grab():
raise ValueError(f"{video} could not be loaded with cv.")
# extract video metadata
fps = video_cap.get(cv2.CAP_PROP_FPS)
width = int(video_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(video_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
total_frames = int(video_cap.get(cv2.CAP_PROP_FRAME_COUNT))
duration = total_frames / fps
width = 0
if width <=0 or height <=0:
_, frame = video_cap.retrieve()
height, width, _ = frame.shape
# set video_cap to look at start_index frame
total_frame_count = 0
total_frames_evaluated = -1
frames_added = 0
base_frame_time = 1 / fps
prev_frame = None
if force_rate == 0:
target_frame_time = base_frame_time
else:
target_frame_time = 1/force_rate
if total_frames > 0:
if force_rate != 0:
yieldable_frames = int(total_frames / fps * force_rate)
else:
yieldable_frames = total_frames
if select_every_nth:
yieldable_frames //= select_every_nth
if frame_load_cap != 0:
yieldable_frames = min(frame_load_cap, yieldable_frames)
else:
yieldable_frames = 0
yield (width, height, fps, duration, total_frames, target_frame_time, yieldable_frames)
pbar = ProgressBar(yieldable_frames)
time_offset=target_frame_time
while video_cap.isOpened():
if time_offset < target_frame_time:
is_returned = video_cap.grab()
# if didn't return frame, video has ended
if not is_returned:
break
time_offset += base_frame_time
if time_offset < target_frame_time:
continue
time_offset -= target_frame_time
# if not at start_index, skip doing anything with frame
total_frame_count += 1
if total_frame_count <= skip_first_frames:
continue
else:
total_frames_evaluated += 1
# if should not be selected, skip doing anything with frame
if total_frames_evaluated%select_every_nth != 0:
continue
# opencv loads images in BGR format (yuck), so need to convert to RGB for ComfyUI use
# follow up: can videos ever have an alpha channel?
# To my testing: No. opencv has no support for alpha
unused, frame = video_cap.retrieve()
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# convert frame to comfyui's expected format
# TODO: frame contains no exif information. Check if opencv2 has already applied
frame = np.array(frame, dtype=np.float32)
torch.from_numpy(frame).div_(255)
if prev_frame is not None:
inp = yield prev_frame
if inp is not None:
#ensure the finally block is called
return
prev_frame = frame
frames_added += 1
if pbar is not None:
pbar.update_absolute(frames_added, yieldable_frames)
# if cap exists and we've reached it, stop processing frames
if frame_load_cap > 0 and frames_added >= frame_load_cap:
break
if meta_batch is not None:
meta_batch.inputs.pop(unique_id)
meta_batch.has_closed_inputs = True
if prev_frame is not None:
yield prev_frame
def ffmpeg_frame_generator(video, force_rate, frame_load_cap, start_time,
custom_width, custom_height, downscale_ratio=8,
meta_batch=None, unique_id=None):
args_dummy = [ffmpeg_path, "-i", video, '-c', 'copy', '-frames:v', '1', "-f", "null", "-"]
size_base = None
fps_base = None
try:
dummy_res = subprocess.run(args_dummy, stdout=subprocess.DEVNULL,
stderr=subprocess.PIPE, check=True)
except subprocess.CalledProcessError as e:
raise Exception("An error occurred in the ffmpeg subprocess:\n" \
+ e.stderr.decode(*ENCODE_ARGS))
lines = dummy_res.stderr.decode(*ENCODE_ARGS)
for line in lines.split('\n'):
match = re.search("^ *Stream .* Video.*, ([1-9]|\\d{2,})x(\\d+)", line)
if match is not None:
size_base = [int(match.group(1)), int(match.group(2))]
fps_match = re.search(", ([\\d\\.]+) fps", line)
if fps_match:
fps_base = float(fps_match.group(1))
else:
fps_base = 1
alpha = re.search("(yuva|rgba)", line) is not None
break
else:
raise Exception("Failed to parse video/image information. FFMPEG output:\n" + lines)
durs_match = re.search("Duration: (\\d+:\\d+:\\d+\\.\\d+),", lines)
if durs_match:
durs = durs_match.group(1).split(':')
duration = int(durs[0])*360 + int(durs[1])*60 + float(durs[2])
else:
duration = 0
if start_time > 0:
if start_time > 4:
post_seek = ['-ss', '4']
pre_seek = ['-ss', str(start_time - 4)]
else:
post_seek = ['-ss', str(start_time)]
pre_seek = []
else:
pre_seek = []
post_seek = []
args_all_frames = [ffmpeg_path, "-v", "error", "-an"] + pre_seek + \
["-i", video, "-pix_fmt", "rgba64le"] + post_seek
vfilters = []
if force_rate != 0:
vfilters.append("fps=fps="+str(force_rate))
if custom_width != 0 or custom_height != 0:
size = target_size(size_base[0], size_base[1], custom_width,
custom_height, downscale_ratio=downscale_ratio)
ar = float(size[0])/float(size[1])
if abs(size_base[0]*ar-size_base[1]) >= 1:
#Aspect ratio is changed. Crop to new aspect ratio before scale
vfilters.append(f"crop=if(gt({ar}\\,a)\\,iw\\,ih*{ar}):if(gt({ar}\\,a)\\,iw/{ar}\\,ih)")
size_arg = ':'.join(map(str,size))
vfilters.append(f"scale={size_arg}")
else:
size = size_base
if len(vfilters) > 0:
args_all_frames += ["-vf", ",".join(vfilters)]
yieldable_frames = (force_rate or fps_base)*duration
if frame_load_cap > 0:
args_all_frames += ["-frames:v", str(frame_load_cap)]
yieldable_frames = min(yieldable_frames, frame_load_cap)
yield (size_base[0], size_base[1], fps_base, duration, fps_base * duration,
1/(force_rate or fps_base), yieldable_frames, size[0], size[1], alpha)
args_all_frames += ["-f", "rawvideo", "-"]
pbar = ProgressBar(yieldable_frames)
try:
with subprocess.Popen(args_all_frames, stdout=subprocess.PIPE) as proc:
#Manually buffer enough bytes for an image
bpi = size[0] * size[1] * 8
current_bytes = bytearray(bpi)
current_offset=0
prev_frame = None
while True:
bytes_read = proc.stdout.read(bpi - current_offset)
if bytes_read is None:#sleep to wait for more data
time.sleep(.1)
continue
if len(bytes_read) == 0:#EOF
break
current_bytes[current_offset:len(bytes_read)] = bytes_read
current_offset+=len(bytes_read)
if current_offset == bpi:
if prev_frame is not None:
yield prev_frame
pbar.update(1)
prev_frame = np.frombuffer(current_bytes, dtype=np.dtype(np.uint16).newbyteorder("<")).reshape(size[1], size[0], 4) / (2**16-1)
if not alpha:
prev_frame = prev_frame[:, :, :-1]
current_offset = 0
except BrokenPipeError as e:
raise Exception("An error occured in the ffmpeg subprocess:\n" \
+ proc.stderr.read().decode(*ENCODE_ARGS))
if meta_batch is not None:
meta_batch.inputs.pop(unique_id)
meta_batch.has_closed_inputs = True
if prev_frame is not None:
yield prev_frame
#Python 3.12 adds an itertools.batched, but it's easily replicated for legacy support
def batched(it, n):
while batch := tuple(itertools.islice(it, n)):
yield batch
def batched_vae_encode(images, vae, frames_per_batch):
for batch in batched(images, frames_per_batch):
image_batch = torch.from_numpy(np.array(batch))
yield from vae.encode(image_batch).numpy()
def resized_cv_frame_gen(custom_width, custom_height, downscale_ratio, **kwargs):
gen = cv_frame_generator(**kwargs)
info = next(gen)
width, height = info[0], info[1]
frames_per_batch = (1920 * 1080 * 16) // (width * height) or 1
if kwargs.get('meta_batch', None) is not None:
frames_per_batch = min(frames_per_batch, kwargs['meta_batch'].frames_per_batch)
if custom_width != 0 or custom_height != 0 or downscale_ratio is not None:
new_size = target_size(width, height, custom_width, custom_height, downscale_ratio)
yield (*info, new_size[0], new_size[1], False)
if new_size[0] != width or new_size[1] != height:
def rescale(frame):
s = torch.from_numpy(np.fromiter(frame, np.dtype((np.float32, (height, width, 3)))))
s = s.movedim(-1,1)
s = common_upscale(s, new_size[0], new_size[1], "lanczos", "center")
return s.movedim(1,-1).numpy()
yield from itertools.chain.from_iterable(map(rescale, batched(gen, frames_per_batch)))
return
else:
yield (*info, info[0], info[1], False)
yield from gen
def load_video(meta_batch=None, unique_id=None, memory_limit_mb=None, vae=None,
generator=resized_cv_frame_gen, format='None', **kwargs):
if 'force_size' in kwargs:
kwargs.pop('force_size')
logger.warn("force_size has been removed. Did you reload the webpage after updating?")
format = get_format(format)
kwargs['video'] = strip_path(kwargs['video'])
if vae is not None:
downscale_ratio = getattr(vae, "downscale_ratio", 8)
else:
downscale_ratio = format.get('dim', (1,))[0]
if meta_batch is None or unique_id not in meta_batch.inputs:
gen = generator(meta_batch=meta_batch, unique_id=unique_id, downscale_ratio=downscale_ratio, **kwargs)
(width, height, fps, duration, total_frames, target_frame_time, yieldable_frames, new_width, new_height, alpha) = next(gen)
if meta_batch is not None:
meta_batch.inputs[unique_id] = (gen, width, height, fps, duration, total_frames, target_frame_time, yieldable_frames, new_width, new_height, alpha)
if yieldable_frames:
meta_batch.total_frames = min(meta_batch.total_frames, yieldable_frames)
else:
(gen, width, height, fps, duration, total_frames, target_frame_time, yieldable_frames, new_width, new_height, alpha) = meta_batch.inputs[unique_id]
memory_limit = None
if memory_limit_mb is not None:
memory_limit *= 2 ** 20
else:
#TODO: verify if garbage collection should be performed here.
#leaves ~128 MB unreserved for safety
try:
memory_limit = (psutil.virtual_memory().available + psutil.swap_memory().free) - 2 ** 27
except:
logger.warn("Failed to calculate available memory. Memory load limit has been disabled")
memory_limit = BIGMAX
if vae is not None:
#space required to load as f32, exist as latent with wiggle room, decode to f32
max_loadable_frames = int(memory_limit//(width*height*3*(4+4+1/10)))
else:
#TODO: use better estimate for when vae is not None
#Consider completely ignoring for load_latent case?
max_loadable_frames = int(memory_limit//(width*height*3*(.1)))
if meta_batch is not None:
if 'frames' in format:
if meta_batch.frames_per_batch % format['frames'][0] != format['frames'][1]:
error = (meta_batch.frames_per_batch - format['frames'][1]) % format['frames'][0]
suggested = meta_batch.frames_per_batch - error
if error > format['frames'][0] / 2:
suggested += format['frames'][0]
raise RuntimeError(f"The chosen frames per batch is incompatible with the selected format. Try {suggested}")
if meta_batch.frames_per_batch > max_loadable_frames:
raise RuntimeError(f"Meta Batch set to {meta_batch.frames_per_batch} frames but only {max_loadable_frames} can fit in memory")
gen = itertools.islice(gen, meta_batch.frames_per_batch)
else:
original_gen = gen
gen = itertools.islice(gen, max_loadable_frames)
frames_per_batch = (1920 * 1080 * 16) // (width * height) or 1
if vae is not None:
gen = batched_vae_encode(gen, vae, frames_per_batch)
vw,vh = new_width//downscale_ratio, new_height//downscale_ratio
channels = getattr(vae, 'latent_channels', 4)
images = torch.from_numpy(np.fromiter(gen, np.dtype((np.float32, (channels,vh,vw)))))
else:
#Some minor wizardry to eliminate a copy and reduce max memory by a factor of ~2
images = torch.from_numpy(np.fromiter(gen, np.dtype((np.float32, (new_height, new_width, 4 if alpha else 3)))))
if meta_batch is None and memory_limit is not None:
try:
next(original_gen)
raise RuntimeError(f"Memory limit hit after loading {len(images)} frames. Stopping execution.")
except StopIteration:
pass
if len(images) == 0:
raise RuntimeError("No frames generated")
if 'frames' in format and len(images) % format['frames'][0] != format['frames'][1]:
err_msg = f"The number of frames loaded {len(images)}, does not match the requirements of the currently selected format."
if len(format['frames']) > 2 and format['frames'][2]:
raise RuntimeError(err_msg)
div, mod = format['frames'][:2]
frames = (len(images) - mod) // div * div + mod
images = images[:frames]
#Commenting out log message since it's displayed in UI. consider further
#logger.warn(err_msg + f" Output has been truncated to {len(images)} frames.")
if 'start_time' in kwargs:
start_time = kwargs['start_time']
else:
start_time = kwargs['skip_first_frames'] * target_frame_time
target_frame_time *= kwargs.get('select_every_nth', 1)
#Setup lambda for lazy audio capture
audio = lazy_get_audio(kwargs['video'], start_time, kwargs['frame_load_cap']*target_frame_time)
#Adjust target_frame_time for select_every_nth
video_info = {
"source_fps": fps,
"source_frame_count": total_frames,
"source_duration": duration,
"source_width": width,
"source_height": height,
"loaded_fps": 1/target_frame_time,
"loaded_frame_count": len(images),
"loaded_duration": len(images) * target_frame_time,
"loaded_width": new_width,
"loaded_height": new_height,
}
if vae is None:
return (images, len(images), audio, video_info)
else:
return ({"samples": images}, len(images), audio, video_info)
class LoadVideoUpload:
@classmethod
def INPUT_TYPES(s):
input_dir = folder_paths.get_input_directory()
files = []
for f in os.listdir(input_dir):
if os.path.isfile(os.path.join(input_dir, f)):
file_parts = f.split('.')
if len(file_parts) > 1 and (file_parts[-1].lower() in video_extensions):
files.append(f)
return {"required": {
"video": (sorted(files),),
"force_rate": (floatOrInt, {"default": 0, "min": 0, "max": 60, "step": 1, "disable": 0}),
"custom_width": ("INT", {"default": 0, "min": 0, "max": DIMMAX, 'disable': 0}),
"custom_height": ("INT", {"default": 0, "min": 0, "max": DIMMAX, 'disable': 0}),
"frame_load_cap": ("INT", {"default": 0, "min": 0, "max": BIGMAX, "step": 1, "disable": 0}),
"skip_first_frames": ("INT", {"default": 0, "min": 0, "max": BIGMAX, "step": 1}),
"select_every_nth": ("INT", {"default": 1, "min": 1, "max": BIGMAX, "step": 1}),
},
"optional": {
"meta_batch": ("VHS_BatchManager",),
"vae": ("VAE",),
"format": get_load_formats(),
},
"hidden": {
"force_size": "STRING",
"unique_id": "UNIQUE_ID"
},
}
CATEGORY = "Video Helper Suite π₯π
₯π
π
’"
RETURN_TYPES = (imageOrLatent, "INT", "AUDIO", "VHS_VIDEOINFO")
RETURN_NAMES = ("IMAGE", "frame_count", "audio", "video_info")
FUNCTION = "load_video"
def load_video(self, **kwargs):
kwargs['video'] = folder_paths.get_annotated_filepath(strip_path(kwargs['video']))
return load_video(**kwargs)
@classmethod
def IS_CHANGED(s, video, **kwargs):
image_path = folder_paths.get_annotated_filepath(video)
return calculate_file_hash(image_path)
@classmethod
def VALIDATE_INPUTS(s, video):
if not folder_paths.exists_annotated_filepath(video):
return "Invalid video file: {}".format(video)
return True
class LoadVideoPath:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"video": ("STRING", {"placeholder": "X://insert/path/here.mp4", "vhs_path_extensions": video_extensions}),
"force_rate": (floatOrInt, {"default": 0, "min": 0, "max": 60, "step": 1, "disable": 0}),
"custom_width": ("INT", {"default": 0, "min": 0, "max": DIMMAX, 'disable': 0}),
"custom_height": ("INT", {"default": 0, "min": 0, "max": DIMMAX, 'disable': 0}),
"frame_load_cap": ("INT", {"default": 0, "min": 0, "max": BIGMAX, "step": 1, "disable": 0}),
"skip_first_frames": ("INT", {"default": 0, "min": 0, "max": BIGMAX, "step": 1}),
"select_every_nth": ("INT", {"default": 1, "min": 1, "max": BIGMAX, "step": 1}),
},
"optional": {
"meta_batch": ("VHS_BatchManager",),
"vae": ("VAE",),
"format": get_load_formats(),
},
"hidden": {
"force_size": "STRING",
"unique_id": "UNIQUE_ID"
},
}
CATEGORY = "Video Helper Suite π₯π
₯π
π
’"
RETURN_TYPES = (imageOrLatent, "INT", "AUDIO", "VHS_VIDEOINFO")
RETURN_NAMES = ("IMAGE", "frame_count", "audio", "video_info")
FUNCTION = "load_video"
def load_video(self, **kwargs):
if kwargs['video'] is None or validate_path(kwargs['video']) != True:
raise Exception("video is not a valid path: " + kwargs['video'])
if is_url(kwargs['video']):
kwargs['video'] = try_download_video(kwargs['video']) or kwargs['video']
return load_video(**kwargs)
@classmethod
def IS_CHANGED(s, video, **kwargs):
return hash_path(video)
@classmethod
def VALIDATE_INPUTS(s, video):
return validate_path(video, allow_none=True)
class LoadVideoFFmpegUpload:
@classmethod
def INPUT_TYPES(s):
input_dir = folder_paths.get_input_directory()
files = []
for f in os.listdir(input_dir):
if os.path.isfile(os.path.join(input_dir, f)):
file_parts = f.split('.')
if len(file_parts) > 1 and (file_parts[-1].lower() in video_extensions):
files.append(f)
return {"required": {
"video": (sorted(files),),
"force_rate": (floatOrInt, {"default": 0, "min": 0, "max": 60, "step": 1, "disable": 0}),
"custom_width": ("INT", {"default": 0, "min": 0, "max": DIMMAX, 'disable': 0}),
"custom_height": ("INT", {"default": 0, "min": 0, "max": DIMMAX, 'disable': 0}),
"frame_load_cap": ("INT", {"default": 0, "min": 0, "max": BIGMAX, "step": 1, "disable": 0}),
"start_time": ("FLOAT", {"default": 0, "min": 0, "max": BIGMAX, "step": .001}),
},
"optional": {
"meta_batch": ("VHS_BatchManager",),
"vae": ("VAE",),
"format": get_load_formats(),
},
"hidden": {
"force_size": "STRING",
"unique_id": "UNIQUE_ID"
},
}
CATEGORY = "Video Helper Suite π₯π
₯π
π
’"
RETURN_TYPES = (imageOrLatent, "MASK", "AUDIO", "VHS_VIDEOINFO")
RETURN_NAMES = ("IMAGE", "mask", "audio", "video_info")
FUNCTION = "load_video"
def load_video(self, **kwargs):
kwargs['video'] = folder_paths.get_annotated_filepath(strip_path(kwargs['video']))
image, _, audio, video_info = load_video(**kwargs, generator=ffmpeg_frame_generator)
if image.size(3) == 4:
return (image[:,:,:,:3], 1-image[:,:,:,3], audio, video_info)
return (image, torch.zeros(image.size(0), 64, 64, device="cpu"), audio, video_info)
@classmethod
def IS_CHANGED(s, video, **kwargs):
image_path = folder_paths.get_annotated_filepath(video)
return calculate_file_hash(image_path)
@classmethod
def VALIDATE_INPUTS(s, video):
if not folder_paths.exists_annotated_filepath(video):
return "Invalid video file: {}".format(video)
return True
class LoadVideoFFmpegPath:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"video": ("STRING", {"placeholder": "X://insert/path/here.mp4", "vhs_path_extensions": video_extensions}),
"force_rate": (floatOrInt, {"default": 0, "min": 0, "max": 60, "step": 1, "disable": 0}),
"custom_width": ("INT", {"default": 0, "min": 0, "max": DIMMAX, 'disable': 0}),
"custom_height": ("INT", {"default": 0, "min": 0, "max": DIMMAX, 'disable': 0}),
"frame_load_cap": ("INT", {"default": 0, "min": 0, "max": BIGMAX, "step": 1, "disable": 0}),
"start_time": ("FLOAT", {"default": 0, "min": 0, "max": BIGMAX, "step": .001}),
},
"optional": {
"meta_batch": ("VHS_BatchManager",),
"vae": ("VAE",),
"format": get_load_formats(),
},
"hidden": {
"force_size": "STRING",
"unique_id": "UNIQUE_ID"
},
}
CATEGORY = "Video Helper Suite π₯π
₯π
π
’"
RETURN_TYPES = (imageOrLatent, "MASK", "AUDIO", "VHS_VIDEOINFO")
RETURN_NAMES = ("IMAGE", "mask", "audio", "video_info")
FUNCTION = "load_video"
def load_video(self, **kwargs):
if kwargs['video'] is None or validate_path(kwargs['video']) != True:
raise Exception("video is not a valid path: " + kwargs['video'])
if is_url(kwargs['video']):
kwargs['video'] = try_download_video(kwargs['video']) or kwargs['video']
image, _, audio, video_info = load_video(**kwargs, generator=ffmpeg_frame_generator)
if isinstance(image, dict):
return (image, None, audio, video_info)
if image.size(3) == 4:
return (image[:,:,:,:3], 1-image[:,:,:,3], audio, video_info)
return (image, torch.zeros(image.size(0), 64, 64, device="cpu"), audio, video_info)
@classmethod
def IS_CHANGED(s, video, **kwargs):
return hash_path(video)
@classmethod
def VALIDATE_INPUTS(s, video):
return validate_path(video, allow_none=True)
class LoadImagePath:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("STRING", {"placeholder": "X://insert/path/here.png", "vhs_path_extensions": list(FolderOfImages.IMG_EXTENSIONS)}),
"custom_width": ("INT", {"default": 0, "min": 0, "max": DIMMAX, "step": 8, 'disable': 0}),
"custom_height": ("INT", {"default": 0, "min": 0, "max": DIMMAX, "step": 8, 'disable': 0}),
},
"optional": {
"vae": ("VAE",),
},
"hidden": {
"force_size": "STRING",
},
}
CATEGORY = "Video Helper Suite π₯π
₯π
π
’"
RETURN_TYPES = (imageOrLatent, "MASK")
RETURN_NAMES = ("IMAGE", "mask")
FUNCTION = "load_image"
def load_image(self, **kwargs):
if kwargs['image'] is None or validate_path(kwargs['image']) != True:
raise Exception("image is not a valid path: " + kwargs['image'])
kwargs.update({'video': kwargs['image'], 'force_rate': 0, 'frame_load_cap': 0,
'start_time': 0})
kwargs.pop('image')
image, _, _, _ = load_video(**kwargs, generator=ffmpeg_frame_generator)
if isinstance(image, dict):
return (image, None)
if image.size(3) == 4:
return (image[:,:,:,:3], 1-image[:,:,:,3])
return (image, torch.zeros(image.size(0), 64, 64, device="cpu"))
@classmethod
def IS_CHANGED(s, image, **kwargs):
return hash_path(image)
@classmethod
def VALIDATE_INPUTS(s, image):
return validate_path(image, allow_none=True)
|