File size: 10,388 Bytes
3483284
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
# (c) City96 || Apache-2.0 (apache.org/licenses/LICENSE-2.0)
import torch
import gguf

from .ops import GGMLTensor
from .dequant import is_quantized, dequantize_tensor

IMG_ARCH_LIST = {"flux", "sd1", "sdxl", "sd3", "aura", "ltxv", "hyvid", "wan"}
TXT_ARCH_LIST = {"t5", "t5encoder", "llama"}

def get_orig_shape(reader, tensor_name):
    field_key = f"comfy.gguf.orig_shape.{tensor_name}"
    field = reader.get_field(field_key)
    if field is None:
        return None
    # Has original shape metadata, so we try to decode it.
    if len(field.types) != 2 or field.types[0] != gguf.GGUFValueType.ARRAY or field.types[1] != gguf.GGUFValueType.INT32:
        raise TypeError(f"Bad original shape metadata for {field_key}: Expected ARRAY of INT32, got {field.types}")
    return torch.Size(tuple(int(field.parts[part_idx][0]) for part_idx in field.data))

def get_field(reader, field_name, field_type):
    field = reader.get_field(field_name)
    if field is None:
        return None
    elif field_type == str:
        # extra check here as this is used for checking arch string
        if len(field.types) != 1 or field.types[0] != gguf.GGUFValueType.STRING:
            raise TypeError(f"Bad type for GGUF {field_name} key: expected string, got {field.types!r}")
        return str(field.parts[field.data[-1]], encoding="utf-8")
    elif field_type in [int, float, bool]:
        return field_type(field.parts[field.data[-1]])
    else:
        raise TypeError(f"Unknown field type {field_type}")

def get_list_field(reader, field_name, field_type):
    field = reader.get_field(field_name)
    if field is None:
        return None
    elif field_type == str:
        return tuple(str(field.parts[part_idx], encoding="utf-8") for part_idx in field.data)
    elif field_type in [int, float, bool]:
        return tuple(field_type(field.parts[part_idx][0]) for part_idx in field.data)
    else:
        raise TypeError(f"Unknown field type {field_type}")

def gguf_sd_loader(path, handle_prefix="model.diffusion_model.", return_arch=False):
    """

    Read state dict as fake tensors

    """
    reader = gguf.GGUFReader(path)

    # filter and strip prefix
    has_prefix = False
    if handle_prefix is not None:
        prefix_len = len(handle_prefix)
        tensor_names = set(tensor.name for tensor in reader.tensors)
        has_prefix = any(s.startswith(handle_prefix) for s in tensor_names)

    tensors = []
    for tensor in reader.tensors:
        sd_key = tensor_name = tensor.name
        if has_prefix:
            if not tensor_name.startswith(handle_prefix):
                continue
            sd_key = tensor_name[prefix_len:]
        tensors.append((sd_key, tensor))

    # detect and verify architecture
    compat = None
    arch_str = get_field(reader, "general.architecture", str)
    if arch_str is None: # stable-diffusion.cpp
        # import here to avoid changes to convert.py breaking regular models
        from .tools.convert import detect_arch
        arch_str = detect_arch(set(val[0] for val in tensors)).arch
        compat = "sd.cpp"
    elif arch_str in ["pig"]:
        from .tools.convert import detect_arch
        arch_str = detect_arch(set(val[0] for val in tensors)).arch
        compat = "pig"
    elif arch_str not in IMG_ARCH_LIST and arch_str not in TXT_ARCH_LIST:
        raise ValueError(f"Unexpected architecture type in GGUF file: {arch_str!r}")

    if compat:
        print(f"Warning: This model file is loaded in compatibility mode '{compat}' [arch:{arch_str}]")

    # main loading loop
    state_dict = {}
    qtype_dict = {}
    for sd_key, tensor in tensors:
        tensor_name = tensor.name
        torch_tensor = torch.from_numpy(tensor.data) # mmap

        shape = get_orig_shape(reader, tensor_name)
        if shape is None:
            shape = torch.Size(tuple(int(v) for v in reversed(tensor.shape)))
            # Workaround for stable-diffusion.cpp SDXL detection.
            if compat == "sd.cpp" and arch_str == "sdxl":
                if any([tensor_name.endswith(x) for x in (".proj_in.weight", ".proj_out.weight")]):
                    while len(shape) > 2 and shape[-1] == 1:
                        shape = shape[:-1]

        # add to state dict
        if tensor.tensor_type in {gguf.GGMLQuantizationType.F32, gguf.GGMLQuantizationType.F16}:
            torch_tensor = torch_tensor.view(*shape)
        state_dict[sd_key] = GGMLTensor(torch_tensor, tensor_type=tensor.tensor_type, tensor_shape=shape)

        # keep track of loaded tensor types
        tensor_type_str = getattr(tensor.tensor_type, "name", repr(tensor.tensor_type))
        qtype_dict[tensor_type_str] = qtype_dict.get(tensor_type_str, 0) + 1

    # print loaded tensor type counts
    print("gguf qtypes: " + ", ".join(f"{k} ({v})" for k, v in qtype_dict.items()))

    # mark largest tensor for vram estimation
    qsd = {k:v for k,v in state_dict.items() if is_quantized(v)}
    if len(qsd) > 0:
        max_key = max(qsd.keys(), key=lambda k: qsd[k].numel())
        state_dict[max_key].is_largest_weight = True

    if return_arch:
        return (state_dict, arch_str)
    return state_dict

# for remapping llama.cpp -> original key names
T5_SD_MAP = {
    "enc.": "encoder.",
    ".blk.": ".block.",
    "token_embd": "shared",
    "output_norm": "final_layer_norm",
    "attn_q": "layer.0.SelfAttention.q",
    "attn_k": "layer.0.SelfAttention.k",
    "attn_v": "layer.0.SelfAttention.v",
    "attn_o": "layer.0.SelfAttention.o",
    "attn_norm": "layer.0.layer_norm",
    "attn_rel_b": "layer.0.SelfAttention.relative_attention_bias",
    "ffn_up": "layer.1.DenseReluDense.wi_1",
    "ffn_down": "layer.1.DenseReluDense.wo",
    "ffn_gate": "layer.1.DenseReluDense.wi_0",
    "ffn_norm": "layer.1.layer_norm",
}

LLAMA_SD_MAP = {
    "blk.": "model.layers.",
    "attn_norm": "input_layernorm",
    "attn_q": "self_attn.q_proj",
    "attn_k": "self_attn.k_proj",
    "attn_v": "self_attn.v_proj",
    "attn_output": "self_attn.o_proj",
    "ffn_up": "mlp.up_proj",
    "ffn_down": "mlp.down_proj",
    "ffn_gate": "mlp.gate_proj",
    "ffn_norm": "post_attention_layernorm",
    "token_embd": "model.embed_tokens",
    "output_norm": "model.norm",
    "output.weight": "lm_head.weight",
}

def sd_map_replace(raw_sd, key_map):
    sd = {}
    for k,v in raw_sd.items():
        for s,d in key_map.items():
            k = k.replace(s,d)
        sd[k] = v
    return sd

def llama_permute(raw_sd, n_head, n_head_kv):
    # Reverse version of LlamaModel.permute in llama.cpp convert script
    sd = {}
    permute = lambda x,h: x.reshape(h, x.shape[0] // h // 2, 2, *x.shape[1:]).swapaxes(1, 2).reshape(x.shape)
    for k,v in raw_sd.items():
        if k.endswith(("q_proj.weight", "q_proj.bias")):
            v.data = permute(v.data, n_head)
        if k.endswith(("k_proj.weight", "k_proj.bias")):
            v.data = permute(v.data, n_head_kv)
        sd[k] = v
    return sd

def gguf_tokenizer_loader(path, temb_shape):
    # convert gguf tokenizer to spiece
    print(f"Attempting to recreate sentencepiece tokenizer from GGUF file metadata...")
    try:
        from sentencepiece import sentencepiece_model_pb2 as model
    except ImportError:
        raise ImportError("Please make sure sentencepiece and protobuf are installed.\npip install sentencepiece protobuf")
    spm = model.ModelProto()

    reader = gguf.GGUFReader(path)

    if get_field(reader, "tokenizer.ggml.model", str) == "t5":
        if temb_shape == (256384, 4096): # probably UMT5
            spm.trainer_spec.model_type == 1 # Unigram (do we have a T5 w/ BPE?)
        else:
            raise NotImplementedError(f"Unknown model, can't set tokenizer!")
    else:
        raise NotImplementedError(f"Unknown model, can't set tokenizer!")

    spm.normalizer_spec.add_dummy_prefix = get_field(reader, "tokenizer.ggml.add_space_prefix", bool)
    spm.normalizer_spec.remove_extra_whitespaces = get_field(reader, "tokenizer.ggml.remove_extra_whitespaces", bool)

    tokens = get_list_field(reader, "tokenizer.ggml.tokens", str)
    scores = get_list_field(reader, "tokenizer.ggml.scores", float)
    toktypes = get_list_field(reader, "tokenizer.ggml.token_type", int)

    for idx, (token, score, toktype) in enumerate(zip(tokens, scores, toktypes)):
        # # These aren't present in the original?
        # if toktype == 5 and idx >= temb_shape[0]%1000):
        #     continue

        piece = spm.SentencePiece()
        piece.piece = token
        piece.score = score
        piece.type = toktype
        spm.pieces.append(piece)

    # unsure if any of these are correct
    spm.trainer_spec.byte_fallback = True
    spm.trainer_spec.vocab_size = len(tokens) # split off unused?
    spm.trainer_spec.max_sentence_length = 4096
    spm.trainer_spec.eos_id = get_field(reader, "tokenizer.ggml.eos_token_id", int)
    spm.trainer_spec.pad_id = get_field(reader, "tokenizer.ggml.padding_token_id", int)

    print(f"Created tokenizer with vocab size of {len(spm.pieces)}")
    del reader
    return torch.ByteTensor(list(spm.SerializeToString()))

def gguf_clip_loader(path):
    sd, arch = gguf_sd_loader(path, return_arch=True)
    if arch in {"t5", "t5encoder"}:
        temb_key = "token_embd.weight"
        if temb_key in sd and sd[temb_key].shape == (256384, 4096):
            # non-standard Comfy-Org tokenizer
            sd["spiece_model"] = gguf_tokenizer_loader(path, sd[temb_key].shape)
            # TODO: dequantizing token embed here is janky but otherwise we OOM due to tensor being massive.
            print(f"Dequantizing {temb_key} to prevent runtime OOM.")
            sd[temb_key] = dequantize_tensor(sd[temb_key], dtype=torch.float16)
        sd = sd_map_replace(sd, T5_SD_MAP)
    elif arch in {"llama"}:
        temb_key = "token_embd.weight"
        if temb_key in sd and sd[temb_key].shape != (128320, 4096):
            # This still works. Raise error?
            print("Warning! token_embd shape may be incorrect for llama 3 model!")
        sd = sd_map_replace(sd, LLAMA_SD_MAP)
        sd = llama_permute(sd, 32, 8) # L3
    else:
        pass
    return sd