Spaces:
Paused
Paused
File size: 10,388 Bytes
3483284 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
# (c) City96 || Apache-2.0 (apache.org/licenses/LICENSE-2.0)
import torch
import gguf
from .ops import GGMLTensor
from .dequant import is_quantized, dequantize_tensor
IMG_ARCH_LIST = {"flux", "sd1", "sdxl", "sd3", "aura", "ltxv", "hyvid", "wan"}
TXT_ARCH_LIST = {"t5", "t5encoder", "llama"}
def get_orig_shape(reader, tensor_name):
field_key = f"comfy.gguf.orig_shape.{tensor_name}"
field = reader.get_field(field_key)
if field is None:
return None
# Has original shape metadata, so we try to decode it.
if len(field.types) != 2 or field.types[0] != gguf.GGUFValueType.ARRAY or field.types[1] != gguf.GGUFValueType.INT32:
raise TypeError(f"Bad original shape metadata for {field_key}: Expected ARRAY of INT32, got {field.types}")
return torch.Size(tuple(int(field.parts[part_idx][0]) for part_idx in field.data))
def get_field(reader, field_name, field_type):
field = reader.get_field(field_name)
if field is None:
return None
elif field_type == str:
# extra check here as this is used for checking arch string
if len(field.types) != 1 or field.types[0] != gguf.GGUFValueType.STRING:
raise TypeError(f"Bad type for GGUF {field_name} key: expected string, got {field.types!r}")
return str(field.parts[field.data[-1]], encoding="utf-8")
elif field_type in [int, float, bool]:
return field_type(field.parts[field.data[-1]])
else:
raise TypeError(f"Unknown field type {field_type}")
def get_list_field(reader, field_name, field_type):
field = reader.get_field(field_name)
if field is None:
return None
elif field_type == str:
return tuple(str(field.parts[part_idx], encoding="utf-8") for part_idx in field.data)
elif field_type in [int, float, bool]:
return tuple(field_type(field.parts[part_idx][0]) for part_idx in field.data)
else:
raise TypeError(f"Unknown field type {field_type}")
def gguf_sd_loader(path, handle_prefix="model.diffusion_model.", return_arch=False):
"""
Read state dict as fake tensors
"""
reader = gguf.GGUFReader(path)
# filter and strip prefix
has_prefix = False
if handle_prefix is not None:
prefix_len = len(handle_prefix)
tensor_names = set(tensor.name for tensor in reader.tensors)
has_prefix = any(s.startswith(handle_prefix) for s in tensor_names)
tensors = []
for tensor in reader.tensors:
sd_key = tensor_name = tensor.name
if has_prefix:
if not tensor_name.startswith(handle_prefix):
continue
sd_key = tensor_name[prefix_len:]
tensors.append((sd_key, tensor))
# detect and verify architecture
compat = None
arch_str = get_field(reader, "general.architecture", str)
if arch_str is None: # stable-diffusion.cpp
# import here to avoid changes to convert.py breaking regular models
from .tools.convert import detect_arch
arch_str = detect_arch(set(val[0] for val in tensors)).arch
compat = "sd.cpp"
elif arch_str in ["pig"]:
from .tools.convert import detect_arch
arch_str = detect_arch(set(val[0] for val in tensors)).arch
compat = "pig"
elif arch_str not in IMG_ARCH_LIST and arch_str not in TXT_ARCH_LIST:
raise ValueError(f"Unexpected architecture type in GGUF file: {arch_str!r}")
if compat:
print(f"Warning: This model file is loaded in compatibility mode '{compat}' [arch:{arch_str}]")
# main loading loop
state_dict = {}
qtype_dict = {}
for sd_key, tensor in tensors:
tensor_name = tensor.name
torch_tensor = torch.from_numpy(tensor.data) # mmap
shape = get_orig_shape(reader, tensor_name)
if shape is None:
shape = torch.Size(tuple(int(v) for v in reversed(tensor.shape)))
# Workaround for stable-diffusion.cpp SDXL detection.
if compat == "sd.cpp" and arch_str == "sdxl":
if any([tensor_name.endswith(x) for x in (".proj_in.weight", ".proj_out.weight")]):
while len(shape) > 2 and shape[-1] == 1:
shape = shape[:-1]
# add to state dict
if tensor.tensor_type in {gguf.GGMLQuantizationType.F32, gguf.GGMLQuantizationType.F16}:
torch_tensor = torch_tensor.view(*shape)
state_dict[sd_key] = GGMLTensor(torch_tensor, tensor_type=tensor.tensor_type, tensor_shape=shape)
# keep track of loaded tensor types
tensor_type_str = getattr(tensor.tensor_type, "name", repr(tensor.tensor_type))
qtype_dict[tensor_type_str] = qtype_dict.get(tensor_type_str, 0) + 1
# print loaded tensor type counts
print("gguf qtypes: " + ", ".join(f"{k} ({v})" for k, v in qtype_dict.items()))
# mark largest tensor for vram estimation
qsd = {k:v for k,v in state_dict.items() if is_quantized(v)}
if len(qsd) > 0:
max_key = max(qsd.keys(), key=lambda k: qsd[k].numel())
state_dict[max_key].is_largest_weight = True
if return_arch:
return (state_dict, arch_str)
return state_dict
# for remapping llama.cpp -> original key names
T5_SD_MAP = {
"enc.": "encoder.",
".blk.": ".block.",
"token_embd": "shared",
"output_norm": "final_layer_norm",
"attn_q": "layer.0.SelfAttention.q",
"attn_k": "layer.0.SelfAttention.k",
"attn_v": "layer.0.SelfAttention.v",
"attn_o": "layer.0.SelfAttention.o",
"attn_norm": "layer.0.layer_norm",
"attn_rel_b": "layer.0.SelfAttention.relative_attention_bias",
"ffn_up": "layer.1.DenseReluDense.wi_1",
"ffn_down": "layer.1.DenseReluDense.wo",
"ffn_gate": "layer.1.DenseReluDense.wi_0",
"ffn_norm": "layer.1.layer_norm",
}
LLAMA_SD_MAP = {
"blk.": "model.layers.",
"attn_norm": "input_layernorm",
"attn_q": "self_attn.q_proj",
"attn_k": "self_attn.k_proj",
"attn_v": "self_attn.v_proj",
"attn_output": "self_attn.o_proj",
"ffn_up": "mlp.up_proj",
"ffn_down": "mlp.down_proj",
"ffn_gate": "mlp.gate_proj",
"ffn_norm": "post_attention_layernorm",
"token_embd": "model.embed_tokens",
"output_norm": "model.norm",
"output.weight": "lm_head.weight",
}
def sd_map_replace(raw_sd, key_map):
sd = {}
for k,v in raw_sd.items():
for s,d in key_map.items():
k = k.replace(s,d)
sd[k] = v
return sd
def llama_permute(raw_sd, n_head, n_head_kv):
# Reverse version of LlamaModel.permute in llama.cpp convert script
sd = {}
permute = lambda x,h: x.reshape(h, x.shape[0] // h // 2, 2, *x.shape[1:]).swapaxes(1, 2).reshape(x.shape)
for k,v in raw_sd.items():
if k.endswith(("q_proj.weight", "q_proj.bias")):
v.data = permute(v.data, n_head)
if k.endswith(("k_proj.weight", "k_proj.bias")):
v.data = permute(v.data, n_head_kv)
sd[k] = v
return sd
def gguf_tokenizer_loader(path, temb_shape):
# convert gguf tokenizer to spiece
print(f"Attempting to recreate sentencepiece tokenizer from GGUF file metadata...")
try:
from sentencepiece import sentencepiece_model_pb2 as model
except ImportError:
raise ImportError("Please make sure sentencepiece and protobuf are installed.\npip install sentencepiece protobuf")
spm = model.ModelProto()
reader = gguf.GGUFReader(path)
if get_field(reader, "tokenizer.ggml.model", str) == "t5":
if temb_shape == (256384, 4096): # probably UMT5
spm.trainer_spec.model_type == 1 # Unigram (do we have a T5 w/ BPE?)
else:
raise NotImplementedError(f"Unknown model, can't set tokenizer!")
else:
raise NotImplementedError(f"Unknown model, can't set tokenizer!")
spm.normalizer_spec.add_dummy_prefix = get_field(reader, "tokenizer.ggml.add_space_prefix", bool)
spm.normalizer_spec.remove_extra_whitespaces = get_field(reader, "tokenizer.ggml.remove_extra_whitespaces", bool)
tokens = get_list_field(reader, "tokenizer.ggml.tokens", str)
scores = get_list_field(reader, "tokenizer.ggml.scores", float)
toktypes = get_list_field(reader, "tokenizer.ggml.token_type", int)
for idx, (token, score, toktype) in enumerate(zip(tokens, scores, toktypes)):
# # These aren't present in the original?
# if toktype == 5 and idx >= temb_shape[0]%1000):
# continue
piece = spm.SentencePiece()
piece.piece = token
piece.score = score
piece.type = toktype
spm.pieces.append(piece)
# unsure if any of these are correct
spm.trainer_spec.byte_fallback = True
spm.trainer_spec.vocab_size = len(tokens) # split off unused?
spm.trainer_spec.max_sentence_length = 4096
spm.trainer_spec.eos_id = get_field(reader, "tokenizer.ggml.eos_token_id", int)
spm.trainer_spec.pad_id = get_field(reader, "tokenizer.ggml.padding_token_id", int)
print(f"Created tokenizer with vocab size of {len(spm.pieces)}")
del reader
return torch.ByteTensor(list(spm.SerializeToString()))
def gguf_clip_loader(path):
sd, arch = gguf_sd_loader(path, return_arch=True)
if arch in {"t5", "t5encoder"}:
temb_key = "token_embd.weight"
if temb_key in sd and sd[temb_key].shape == (256384, 4096):
# non-standard Comfy-Org tokenizer
sd["spiece_model"] = gguf_tokenizer_loader(path, sd[temb_key].shape)
# TODO: dequantizing token embed here is janky but otherwise we OOM due to tensor being massive.
print(f"Dequantizing {temb_key} to prevent runtime OOM.")
sd[temb_key] = dequantize_tensor(sd[temb_key], dtype=torch.float16)
sd = sd_map_replace(sd, T5_SD_MAP)
elif arch in {"llama"}:
temb_key = "token_embd.weight"
if temb_key in sd and sd[temb_key].shape != (128320, 4096):
# This still works. Raise error?
print("Warning! token_embd shape may be incorrect for llama 3 model!")
sd = sd_map_replace(sd, LLAMA_SD_MAP)
sd = llama_permute(sd, 32, 8) # L3
else:
pass
return sd
|