Update src/txagent/toolrag.py
Browse files- src/txagent/toolrag.py +67 -60
src/txagent/toolrag.py
CHANGED
@@ -1,60 +1,67 @@
|
|
1 |
-
|
2 |
-
import
|
3 |
-
import
|
4 |
-
from
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
self.
|
11 |
-
self.
|
12 |
-
self.
|
13 |
-
self.
|
14 |
-
self.
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
self.rag_model
|
19 |
-
self.rag_model.
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
all_tools_str = [json.dumps(
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
self.tool_embedding_path =
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import torch
|
4 |
+
from sentence_transformers import SentenceTransformer
|
5 |
+
from .utils import get_md5
|
6 |
+
|
7 |
+
|
8 |
+
class ToolRAGModel:
|
9 |
+
def __init__(self, rag_model_name):
|
10 |
+
self.rag_model_name = rag_model_name
|
11 |
+
self.rag_model = None
|
12 |
+
self.tool_desc_embedding = None
|
13 |
+
self.tool_name = None
|
14 |
+
self.tool_embedding_path = None
|
15 |
+
self.load_rag_model()
|
16 |
+
|
17 |
+
def load_rag_model(self):
|
18 |
+
self.rag_model = SentenceTransformer(self.rag_model_name)
|
19 |
+
self.rag_model.max_seq_length = 4096
|
20 |
+
self.rag_model.tokenizer.padding_side = "right"
|
21 |
+
|
22 |
+
def load_tool_desc_embedding(self, toolbox):
|
23 |
+
self.tool_name, _ = toolbox.refresh_tool_name_desc(enable_full_desc=True)
|
24 |
+
all_tools_str = [json.dumps(each) for each in toolbox.prepare_tool_prompts(toolbox.all_tools)]
|
25 |
+
md5_value = get_md5(str(all_tools_str))
|
26 |
+
print("Computed MD5 for tool embedding:", md5_value)
|
27 |
+
|
28 |
+
self.tool_embedding_path = os.path.join(
|
29 |
+
os.path.dirname(__file__),
|
30 |
+
self.rag_model_name.split("/")[-1] + f"_tool_embedding_{md5_value}.pt"
|
31 |
+
)
|
32 |
+
|
33 |
+
if os.path.exists(self.tool_embedding_path):
|
34 |
+
try:
|
35 |
+
self.tool_desc_embedding = torch.load(self.tool_embedding_path, map_location="cpu")
|
36 |
+
assert len(self.tool_desc_embedding) == len(toolbox.all_tools), \
|
37 |
+
"Tool count mismatch with loaded embeddings."
|
38 |
+
print("\033[92mLoaded cached tool_desc_embedding.\033[0m")
|
39 |
+
return
|
40 |
+
except Exception as e:
|
41 |
+
print(f"⚠️ Failed loading cached embeddings: {e}")
|
42 |
+
self.tool_desc_embedding = None
|
43 |
+
|
44 |
+
print("\033[93mGenerating new tool_desc_embedding...\033[0m")
|
45 |
+
self.tool_desc_embedding = self.rag_model.encode(
|
46 |
+
all_tools_str, prompt="", normalize_embeddings=True
|
47 |
+
)
|
48 |
+
|
49 |
+
torch.save(self.tool_desc_embedding, self.tool_embedding_path)
|
50 |
+
print(f"\033[92mSaved new tool_desc_embedding to {self.tool_embedding_path}\033[0m")
|
51 |
+
|
52 |
+
def rag_infer(self, query, top_k=5):
|
53 |
+
torch.cuda.empty_cache()
|
54 |
+
queries = [query]
|
55 |
+
query_embeddings = self.rag_model.encode(
|
56 |
+
queries, prompt="", normalize_embeddings=True
|
57 |
+
)
|
58 |
+
if self.tool_desc_embedding is None:
|
59 |
+
raise RuntimeError("❌ tool_desc_embedding is not initialized. Did you forget to call load_tool_desc_embedding()?")
|
60 |
+
|
61 |
+
scores = self.rag_model.similarity(
|
62 |
+
query_embeddings, self.tool_desc_embedding
|
63 |
+
)
|
64 |
+
top_k = min(top_k, len(self.tool_name))
|
65 |
+
top_k_indices = torch.topk(scores, top_k).indices.tolist()[0]
|
66 |
+
top_k_tool_names = [self.tool_name[i] for i in top_k_indices]
|
67 |
+
return top_k_tool_names
|