|
import gradio as gr |
|
import os |
|
import sys |
|
import json |
|
import gc |
|
import numpy as np |
|
from vllm import LLM, SamplingParams |
|
from jinja2 import Template |
|
from typing import List |
|
import types |
|
from tooluniverse import ToolUniverse |
|
from gradio import ChatMessage |
|
from .toolrag import ToolRAGModel |
|
import torch |
|
|
|
import logging |
|
logger = logging.getLogger(__name__) |
|
logging.basicConfig(level=logging.INFO) |
|
|
|
from .utils import NoRepeatSentenceProcessor, ReasoningTraceChecker, tool_result_format |
|
|
|
|
|
class TxAgent: |
|
def __init__(self, model_name, |
|
rag_model_name, |
|
tool_files_dict=None, |
|
enable_finish=True, |
|
enable_rag=True, |
|
enable_summary=False, |
|
init_rag_num=0, |
|
step_rag_num=10, |
|
summary_mode='step', |
|
summary_skip_last_k=0, |
|
summary_context_length=None, |
|
force_finish=True, |
|
avoid_repeat=True, |
|
seed=None, |
|
enable_checker=False, |
|
enable_chat=False, |
|
additional_default_tools=None, |
|
): |
|
self.model_name = model_name |
|
self.tokenizer = None |
|
self.terminators = None |
|
self.rag_model_name = rag_model_name |
|
self.tool_files_dict = tool_files_dict |
|
self.model = None |
|
self.rag_model = ToolRAGModel(rag_model_name) |
|
self.tooluniverse = None |
|
|
|
self.prompt_multi_step = "You are a helpful assistant that will solve problems through detailed, step-by-step reasoning and actions based on your reasoning. Typically, your actions will use the provided functions. You have access to the following functions." |
|
self.self_prompt = "Strictly follow the instruction." |
|
self.chat_prompt = "You are helpful assistant to chat with the user." |
|
self.enable_finish = enable_finish |
|
self.enable_rag = enable_rag |
|
self.enable_summary = enable_summary |
|
self.summary_mode = summary_mode |
|
self.summary_skip_last_k = summary_skip_last_k |
|
self.summary_context_length = summary_context_length |
|
self.init_rag_num = init_rag_num |
|
self.step_rag_num = step_rag_num |
|
self.force_finish = force_finish |
|
self.avoid_repeat = avoid_repeat |
|
self.seed = seed |
|
self.enable_checker = enable_checker |
|
self.additional_default_tools = additional_default_tools |
|
self.print_self_values() |
|
|
|
def init_model(self): |
|
self.load_models() |
|
self.load_tooluniverse() |
|
self.load_tool_desc_embedding() |
|
|
|
def print_self_values(self): |
|
for attr, value in self.__dict__.items(): |
|
print(f"{attr}: {value}") |
|
|
|
def load_models(self, model_name=None): |
|
if model_name is not None: |
|
if model_name == self.model_name: |
|
return f"The model {model_name} is already loaded." |
|
self.model_name = model_name |
|
|
|
self.model = LLM(model=self.model_name) |
|
self.chat_template = Template(self.model.get_tokenizer().chat_template) |
|
self.tokenizer = self.model.get_tokenizer() |
|
|
|
return f"Model {model_name} loaded successfully." |
|
|
|
def load_tooluniverse(self): |
|
self.tooluniverse = ToolUniverse(tool_files=self.tool_files_dict) |
|
self.tooluniverse.load_tools() |
|
special_tools = self.tooluniverse.prepare_tool_prompts( |
|
self.tooluniverse.tool_category_dicts["special_tools"]) |
|
self.special_tools_name = [tool['name'] for tool in special_tools] |
|
|
|
def load_tool_desc_embedding(self): |
|
self.rag_model.load_tool_desc_embedding(self.tooluniverse) |
|
|
|
def rag_infer(self, query, top_k=5): |
|
return self.rag_model.rag_infer(query, top_k) |
|
|
|
def initialize_tools_prompt(self, call_agent, call_agent_level, message): |
|
picked_tools_prompt = [] |
|
picked_tools_prompt = self.add_special_tools( |
|
picked_tools_prompt, call_agent=call_agent) |
|
if call_agent: |
|
call_agent_level += 1 |
|
if call_agent_level >= 2: |
|
call_agent = False |
|
|
|
if not call_agent: |
|
picked_tools_prompt += self.tool_RAG( |
|
message=message, rag_num=self.init_rag_num) |
|
return picked_tools_prompt, call_agent_level |
|
|
|
def initialize_conversation(self, message, conversation=None, history=None): |
|
if conversation is None: |
|
conversation = [] |
|
|
|
conversation = self.set_system_prompt( |
|
conversation, self.prompt_multi_step) |
|
if history is not None: |
|
if len(history) == 0: |
|
conversation = [] |
|
print("clear conversation successfully") |
|
else: |
|
for i in range(len(history)): |
|
if history[i]['role'] == 'user': |
|
if i-1 >= 0 and history[i-1]['role'] == 'assistant': |
|
conversation.append( |
|
{"role": "assistant", "content": history[i-1]['content']}) |
|
conversation.append( |
|
{"role": "user", "content": history[i]['content']}) |
|
if i == len(history)-1 and history[i]['role'] == 'assistant': |
|
conversation.append( |
|
{"role": "assistant", "content": history[i]['content']}) |
|
|
|
conversation.append({"role": "user", "content": message}) |
|
|
|
return conversation |
|
|
|
def tool_RAG(self, message=None, |
|
picked_tool_names=None, |
|
existing_tools_prompt=[], |
|
rag_num=5, |
|
return_call_result=False): |
|
extra_factor = 30 |
|
if picked_tool_names is None: |
|
assert picked_tool_names is not None or message is not None |
|
picked_tool_names = self.rag_infer( |
|
message, top_k=rag_num*extra_factor) |
|
|
|
picked_tool_names_no_special = [] |
|
for tool in picked_tool_names: |
|
if tool not in self.special_tools_name: |
|
picked_tool_names_no_special.append(tool) |
|
picked_tool_names_no_special = picked_tool_names_no_special[:rag_num] |
|
picked_tool_names = picked_tool_names_no_special[:rag_num] |
|
|
|
picked_tools = self.tooluniverse.get_tool_by_name(picked_tool_names) |
|
picked_tools_prompt = self.tooluniverse.prepare_tool_prompts( |
|
picked_tools) |
|
if return_call_result: |
|
return picked_tools_prompt, picked_tool_names |
|
return picked_tools_prompt |
|
|
|
def add_special_tools(self, tools, call_agent=False): |
|
if self.enable_finish: |
|
tools.append(self.tooluniverse.get_one_tool_by_one_name( |
|
'Finish', return_prompt=True)) |
|
print("Finish tool is added") |
|
if call_agent: |
|
tools.append(self.tooluniverse.get_one_tool_by_one_name( |
|
'CallAgent', return_prompt=True)) |
|
print("CallAgent tool is added") |
|
else: |
|
if self.enable_rag: |
|
tools.append(self.tooluniverse.get_one_tool_by_one_name( |
|
'Tool_RAG', return_prompt=True)) |
|
print("Tool_RAG tool is added") |
|
|
|
if self.additional_default_tools is not None: |
|
for each_tool_name in self.additional_default_tools: |
|
tool_prompt = self.tooluniverse.get_one_tool_by_one_name( |
|
each_tool_name, return_prompt=True) |
|
if tool_prompt is not None: |
|
print(f"{each_tool_name} tool is added") |
|
tools.append(tool_prompt) |
|
return tools |
|
|
|
def add_finish_tools(self, tools): |
|
tools.append(self.tooluniverse.get_one_tool_by_one_name( |
|
'Finish', return_prompt=True)) |
|
print("Finish tool is added") |
|
return tools |
|
|
|
def set_system_prompt(self, conversation, sys_prompt): |
|
if len(conversation) == 0: |
|
conversation.append( |
|
{"role": "system", "content": sys_prompt}) |
|
else: |
|
conversation[0] = {"role": "system", "content": sys_prompt} |
|
return conversation |
|
|
|
def run_function_call(self, fcall_str, |
|
return_message=False, |
|
existing_tools_prompt=None, |
|
message_for_call_agent=None, |
|
call_agent=False, |
|
call_agent_level=None, |
|
temperature=None): |
|
|
|
function_call_json, message = self.tooluniverse.extract_function_call_json( |
|
fcall_str, return_message=return_message, verbose=False) |
|
call_results = [] |
|
special_tool_call = '' |
|
if function_call_json is not None: |
|
if isinstance(function_call_json, list): |
|
for i in range(len(function_call_json)): |
|
print("\033[94mTool Call:\033[0m", function_call_json[i]) |
|
if function_call_json[i]["name"] == 'Finish': |
|
special_tool_call = 'Finish' |
|
break |
|
elif function_call_json[i]["name"] == 'Tool_RAG': |
|
new_tools_prompt, call_result = self.tool_RAG( |
|
message=message, |
|
existing_tools_prompt=existing_tools_prompt, |
|
rag_num=self.step_rag_num, |
|
return_call_result=True) |
|
existing_tools_prompt += new_tools_prompt |
|
elif function_call_json[i]["name"] == 'CallAgent': |
|
if call_agent_level < 2 and call_agent: |
|
solution_plan = function_call_json[i]['arguments']['solution'] |
|
full_message = ( |
|
message_for_call_agent + |
|
"\nYou must follow the following plan to answer the question: " + |
|
str(solution_plan) |
|
) |
|
call_result = self.run_multistep_agent( |
|
full_message, temperature=temperature, |
|
max_new_tokens=1024, max_token=99999, |
|
call_agent=False, call_agent_level=call_agent_level) |
|
call_result = call_result.split( |
|
'[FinalAnswer]')[-1].strip() |
|
else: |
|
call_result = "Error: The CallAgent has been disabled. Please proceed with your reasoning process to solve this question." |
|
else: |
|
call_result = self.tooluniverse.run_one_function( |
|
function_call_json[i]) |
|
|
|
call_id = self.tooluniverse.call_id_gen() |
|
function_call_json[i]["call_id"] = call_id |
|
print("\033[94mTool Call Result:\033[0m", call_result) |
|
call_results.append({ |
|
"role": "tool", |
|
"content": json.dumps({"content": call_result, "call_id": call_id}) |
|
}) |
|
else: |
|
call_results.append({ |
|
"role": "tool", |
|
"content": json.dumps({"content": "Not a valid function call, please check the function call format."}) |
|
}) |
|
|
|
revised_messages = [{ |
|
"role": "assistant", |
|
"content": message.strip(), |
|
"tool_calls": json.dumps(function_call_json) |
|
}] + call_results |
|
|
|
|
|
return revised_messages, existing_tools_prompt, special_tool_call |
|
|
|
def run_function_call_stream(self, fcall_str, |
|
return_message=False, |
|
existing_tools_prompt=None, |
|
message_for_call_agent=None, |
|
call_agent=False, |
|
call_agent_level=None, |
|
temperature=None, |
|
return_gradio_history=True): |
|
|
|
function_call_json, message = self.tooluniverse.extract_function_call_json( |
|
fcall_str, return_message=return_message, verbose=False) |
|
call_results = [] |
|
special_tool_call = '' |
|
if return_gradio_history: |
|
gradio_history = [] |
|
if function_call_json is not None: |
|
if isinstance(function_call_json, list): |
|
for i in range(len(function_call_json)): |
|
if function_call_json[i]["name"] == 'Finish': |
|
special_tool_call = 'Finish' |
|
break |
|
elif function_call_json[i]["name"] == 'Tool_RAG': |
|
new_tools_prompt, call_result = self.tool_RAG( |
|
message=message, |
|
existing_tools_prompt=existing_tools_prompt, |
|
rag_num=self.step_rag_num, |
|
return_call_result=True) |
|
existing_tools_prompt += new_tools_prompt |
|
elif function_call_json[i]["name"] == 'DirectResponse': |
|
call_result = function_call_json[i]['arguments']['respose'] |
|
special_tool_call = 'DirectResponse' |
|
elif function_call_json[i]["name"] == 'RequireClarification': |
|
call_result = function_call_json[i]['arguments']['unclear_question'] |
|
special_tool_call = 'RequireClarification' |
|
elif function_call_json[i]["name"] == 'CallAgent': |
|
if call_agent_level < 2 and call_agent: |
|
solution_plan = function_call_json[i]['arguments']['solution'] |
|
full_message = ( |
|
message_for_call_agent + |
|
"\nYou must follow the following plan to answer the question: " + |
|
str(solution_plan) |
|
) |
|
sub_agent_task = "Sub TxAgent plan: " + \ |
|
str(solution_plan) |
|
|
|
call_result = yield from self.run_gradio_chat( |
|
full_message, history=[], temperature=temperature, |
|
max_new_tokens=1024, max_token=99999, |
|
call_agent=False, call_agent_level=call_agent_level, |
|
conversation=None, |
|
sub_agent_task=sub_agent_task) |
|
|
|
call_result = call_result.split( |
|
'[FinalAnswer]')[-1] |
|
else: |
|
call_result = "Error: The CallAgent has been disabled. Please proceed with your reasoning process to solve this question." |
|
else: |
|
call_result = self.tooluniverse.run_one_function( |
|
function_call_json[i]) |
|
|
|
call_id = self.tooluniverse.call_id_gen() |
|
function_call_json[i]["call_id"] = call_id |
|
call_results.append({ |
|
"role": "tool", |
|
"content": json.dumps({"content": call_result, "call_id": call_id}) |
|
}) |
|
if return_gradio_history and function_call_json[i]["name"] != 'Finish': |
|
if function_call_json[i]["name"] == 'Tool_RAG': |
|
gradio_history.append(ChatMessage(role="assistant", content=str(call_result), metadata={ |
|
"title": "🧰 "+function_call_json[i]['name'], "log": str(function_call_json[i]['arguments'])})) |
|
|
|
else: |
|
gradio_history.append(ChatMessage(role="assistant", content=str(call_result), metadata={ |
|
"title": "⚒️ "+function_call_json[i]['name'], "log": str(function_call_json[i]['arguments'])})) |
|
else: |
|
call_results.append({ |
|
"role": "tool", |
|
"content": json.dumps({"content": "Not a valid function call, please check the function call format."}) |
|
}) |
|
|
|
revised_messages = [{ |
|
"role": "assistant", |
|
"content": message.strip(), |
|
"tool_calls": json.dumps(function_call_json) |
|
}] + call_results |
|
|
|
|
|
if return_gradio_history: |
|
return revised_messages, existing_tools_prompt, special_tool_call, gradio_history |
|
else: |
|
return revised_messages, existing_tools_prompt, special_tool_call |
|
|
|
def get_answer_based_on_unfinished_reasoning(self, conversation, temperature, max_new_tokens, max_token, outputs=None): |
|
if conversation[-1]['role'] == 'assisant': |
|
conversation.append( |
|
{'role': 'tool', 'content': 'Errors happen during the function call, please come up with the final answer with the current information.'}) |
|
finish_tools_prompt = self.add_finish_tools([]) |
|
|
|
last_outputs_str = self.llm_infer(messages=conversation, |
|
temperature=temperature, |
|
tools=finish_tools_prompt, |
|
output_begin_string='Since I cannot continue reasoning, I will provide the final answer based on the current information and general knowledge.\n\n[FinalAnswer]', |
|
skip_special_tokens=True, |
|
max_new_tokens=max_new_tokens, max_token=max_token) |
|
print(last_outputs_str) |
|
return last_outputs_str |
|
|
|
def run_multistep_agent(self, message: str, |
|
temperature: float, |
|
max_new_tokens: int, |
|
max_token: int, |
|
max_round: int = 20, |
|
call_agent=False, |
|
call_agent_level=0) -> str: |
|
""" |
|
Generate a streaming response using the llama3-8b model. |
|
Args: |
|
message (str): The input message. |
|
temperature (float): The temperature for generating the response. |
|
max_new_tokens (int): The maximum number of new tokens to generate. |
|
Returns: |
|
str: The generated response. |
|
""" |
|
print("\033[1;32;40mstart\033[0m") |
|
picked_tools_prompt, call_agent_level = self.initialize_tools_prompt( |
|
call_agent, call_agent_level, message) |
|
conversation = self.initialize_conversation(message) |
|
|
|
outputs = [] |
|
last_outputs = [] |
|
next_round = True |
|
function_call_messages = [] |
|
current_round = 0 |
|
token_overflow = False |
|
enable_summary = False |
|
last_status = {} |
|
|
|
if self.enable_checker: |
|
checker = ReasoningTraceChecker(message, conversation) |
|
try: |
|
while next_round and current_round < max_round: |
|
current_round += 1 |
|
if len(outputs) > 0: |
|
function_call_messages, picked_tools_prompt, special_tool_call = self.run_function_call( |
|
last_outputs, return_message=True, |
|
existing_tools_prompt=picked_tools_prompt, |
|
message_for_call_agent=message, |
|
call_agent=call_agent, |
|
call_agent_level=call_agent_level, |
|
temperature=temperature) |
|
|
|
if special_tool_call == 'Finish': |
|
next_round = False |
|
conversation.extend(function_call_messages) |
|
if isinstance(function_call_messages[0]['content'], types.GeneratorType): |
|
function_call_messages[0]['content'] = next( |
|
function_call_messages[0]['content']) |
|
return function_call_messages[0]['content'].split('[FinalAnswer]')[-1] |
|
|
|
if (self.enable_summary or token_overflow) and not call_agent: |
|
if token_overflow: |
|
print("token_overflow, using summary") |
|
enable_summary = True |
|
last_status = self.function_result_summary( |
|
conversation, status=last_status, enable_summary=enable_summary) |
|
|
|
if function_call_messages is not None: |
|
conversation.extend(function_call_messages) |
|
outputs.append(tool_result_format( |
|
function_call_messages)) |
|
else: |
|
next_round = False |
|
conversation.extend( |
|
[{"role": "assistant", "content": ''.join(last_outputs)}]) |
|
return ''.join(last_outputs).replace("</s>", "") |
|
if self.enable_checker: |
|
good_status, wrong_info = checker.check_conversation() |
|
if not good_status: |
|
next_round = False |
|
print( |
|
"Internal error in reasoning: " + wrong_info) |
|
break |
|
last_outputs = [] |
|
outputs.append("### TxAgent:\n") |
|
last_outputs_str, token_overflow = self.llm_infer(messages=conversation, |
|
temperature=temperature, |
|
tools=picked_tools_prompt, |
|
skip_special_tokens=False, |
|
max_new_tokens=max_new_tokens, max_token=max_token, |
|
check_token_status=True) |
|
if last_outputs_str is None: |
|
next_round = False |
|
print( |
|
"The number of tokens exceeds the maximum limit.") |
|
else: |
|
last_outputs.append(last_outputs_str) |
|
if max_round == current_round: |
|
print("The number of rounds exceeds the maximum limit!") |
|
if self.force_finish: |
|
return self.get_answer_based_on_unfinished_reasoning(conversation, temperature, max_new_tokens, max_token) |
|
else: |
|
return None |
|
|
|
except Exception as e: |
|
print(f"Error: {e}") |
|
if self.force_finish: |
|
return self.get_answer_based_on_unfinished_reasoning(conversation, temperature, max_new_tokens, max_token) |
|
else: |
|
return None |
|
|
|
def build_logits_processor(self, messages, llm): |
|
|
|
tokenizer = llm.get_tokenizer() |
|
if self.avoid_repeat and len(messages) > 2: |
|
assistant_messages = [] |
|
for i in range(1, len(messages) + 1): |
|
if messages[-i]['role'] == 'assistant': |
|
assistant_messages.append(messages[-i]['content']) |
|
if len(assistant_messages) == 2: |
|
break |
|
forbidden_ids = [tokenizer.encode( |
|
msg, add_special_tokens=False) for msg in assistant_messages] |
|
return [NoRepeatSentenceProcessor(forbidden_ids, 5)] |
|
else: |
|
return None |
|
|
|
def llm_infer(self, messages, temperature=0.1, tools=None, |
|
output_begin_string=None, max_new_tokens=2048, |
|
max_token=None, skip_special_tokens=True, |
|
model=None, tokenizer=None, terminators=None, seed=None, check_token_status=False): |
|
|
|
if model is None: |
|
model = self.model |
|
|
|
logits_processor = self.build_logits_processor(messages, model) |
|
sampling_params = SamplingParams( |
|
temperature=temperature, |
|
max_tokens=max_new_tokens, |
|
|
|
seed=seed if seed is not None else self.seed, |
|
) |
|
|
|
prompt = self.chat_template.render( |
|
messages=messages, tools=tools, add_generation_prompt=True) |
|
if output_begin_string is not None: |
|
prompt += output_begin_string |
|
|
|
if check_token_status and max_token is not None: |
|
token_overflow = False |
|
num_input_tokens = len(self.tokenizer.encode( |
|
prompt, return_tensors="pt")[0]) |
|
if max_token is not None: |
|
if num_input_tokens > max_token: |
|
torch.cuda.empty_cache() |
|
gc.collect() |
|
print("Number of input tokens before inference:", |
|
num_input_tokens) |
|
logger.info( |
|
"The number of tokens exceeds the maximum limit!!!!") |
|
token_overflow = True |
|
return None, token_overflow |
|
output = model.generate( |
|
prompt, |
|
sampling_params=sampling_params, |
|
) |
|
output = output[0].outputs[0].text |
|
print("\033[92m" + output + "\033[0m") |
|
if check_token_status and max_token is not None: |
|
return output, token_overflow |
|
|
|
return output |
|
|
|
def run_self_agent(self, message: str, |
|
temperature: float, |
|
max_new_tokens: int, |
|
max_token: int) -> str: |
|
|
|
print("\033[1;32;40mstart self agent\033[0m") |
|
conversation = [] |
|
conversation = self.set_system_prompt(conversation, self.self_prompt) |
|
conversation.append({"role": "user", "content": message}) |
|
return self.llm_infer(messages=conversation, |
|
temperature=temperature, |
|
tools=None, |
|
max_new_tokens=max_new_tokens, max_token=max_token) |
|
|
|
def run_chat_agent(self, message: str, |
|
temperature: float, |
|
max_new_tokens: int, |
|
max_token: int) -> str: |
|
|
|
print("\033[1;32;40mstart chat agent\033[0m") |
|
conversation = [] |
|
conversation = self.set_system_prompt(conversation, self.chat_prompt) |
|
conversation.append({"role": "user", "content": message}) |
|
return self.llm_infer(messages=conversation, |
|
temperature=temperature, |
|
tools=None, |
|
max_new_tokens=max_new_tokens, max_token=max_token) |
|
|
|
def run_format_agent(self, message: str, |
|
answer: str, |
|
temperature: float, |
|
max_new_tokens: int, |
|
max_token: int) -> str: |
|
|
|
print("\033[1;32;40mstart format agent\033[0m") |
|
if '[FinalAnswer]' in answer: |
|
possible_final_answer = answer.split("[FinalAnswer]")[-1] |
|
elif "\n\n" in answer: |
|
possible_final_answer = answer.split("\n\n")[-1] |
|
else: |
|
possible_final_answer = answer.strip() |
|
if len(possible_final_answer) == 1: |
|
choice = possible_final_answer[0] |
|
if choice in ['A', 'B', 'C', 'D', 'E']: |
|
return choice |
|
elif len(possible_final_answer) > 1: |
|
if possible_final_answer[1] == ':': |
|
choice = possible_final_answer[0] |
|
if choice in ['A', 'B', 'C', 'D', 'E']: |
|
print("choice", choice) |
|
return choice |
|
|
|
conversation = [] |
|
format_prompt = f"You are helpful assistant to transform the answer of agent to the final answer of 'A', 'B', 'C', 'D'." |
|
conversation = self.set_system_prompt(conversation, format_prompt) |
|
conversation.append({"role": "user", "content": message + |
|
"\nThe final answer of agent:" + answer + "\n The answer is (must be a letter):"}) |
|
return self.llm_infer(messages=conversation, |
|
temperature=temperature, |
|
tools=None, |
|
max_new_tokens=max_new_tokens, max_token=max_token) |
|
|
|
def run_summary_agent(self, thought_calls: str, |
|
function_response: str, |
|
temperature: float, |
|
max_new_tokens: int, |
|
max_token: int) -> str: |
|
print("\033[1;32;40mSummarized Tool Result:\033[0m") |
|
generate_tool_result_summary_training_prompt = """Thought and function calls: |
|
{thought_calls} |
|
|
|
Function calls' responses: |
|
\"\"\" |
|
{function_response} |
|
\"\"\" |
|
|
|
Based on the Thought and function calls, and the function calls' responses, you need to generate a summary of the function calls' responses that fulfills the requirements of the thought. The summary MUST BE ONE sentence and include all necessary information. |
|
|
|
Directly respond with the summarized sentence of the function calls' responses only. |
|
|
|
Generate **one summarized sentence** about "function calls' responses" with necessary information, and respond with a string: |
|
""".format(thought_calls=thought_calls, function_response=function_response) |
|
conversation = [] |
|
conversation.append( |
|
{"role": "user", "content": generate_tool_result_summary_training_prompt}) |
|
output = self.llm_infer(messages=conversation, |
|
temperature=temperature, |
|
tools=None, |
|
max_new_tokens=max_new_tokens, max_token=max_token) |
|
|
|
if '[' in output: |
|
output = output.split('[')[0] |
|
return output |
|
|
|
def function_result_summary(self, input_list, status, enable_summary): |
|
""" |
|
Processes the input list, extracting information from sequences of 'user', 'tool', 'assistant' roles. |
|
Supports 'length' and 'step' modes, and skips the last 'k' groups. |
|
|
|
Parameters: |
|
input_list (list): A list of dictionaries containing role and other information. |
|
summary_skip_last_k (int): Number of groups to skip from the end. Defaults to 0. |
|
summary_context_length (int): The context length threshold for the 'length' mode. |
|
last_processed_index (tuple or int): The last processed index. |
|
|
|
Returns: |
|
list: A list of extracted information from valid sequences. |
|
""" |
|
if 'tool_call_step' not in status: |
|
status['tool_call_step'] = 0 |
|
|
|
for idx in range(len(input_list)): |
|
pos_id = len(input_list)-idx-1 |
|
if input_list[pos_id]['role'] == 'assistant': |
|
if 'tool_calls' in input_list[pos_id]: |
|
if 'Tool_RAG' in str(input_list[pos_id]['tool_calls']): |
|
status['tool_call_step'] += 1 |
|
break |
|
|
|
if 'step' in status: |
|
status['step'] += 1 |
|
else: |
|
status['step'] = 0 |
|
|
|
if not enable_summary: |
|
return status |
|
|
|
if 'summarized_index' not in status: |
|
status['summarized_index'] = 0 |
|
|
|
if 'summarized_step' not in status: |
|
status['summarized_step'] = 0 |
|
|
|
if 'previous_length' not in status: |
|
status['previous_length'] = 0 |
|
|
|
if 'history' not in status: |
|
status['history'] = [] |
|
|
|
function_response = '' |
|
idx = 0 |
|
current_summarized_index = status['summarized_index'] |
|
|
|
status['history'].append(self.summary_mode == 'step' and status['summarized_step'] |
|
< status['step']-status['tool_call_step']-self.summary_skip_last_k) |
|
|
|
idx = current_summarized_index |
|
while idx < len(input_list): |
|
if (self.summary_mode == 'step' and status['summarized_step'] < status['step']-status['tool_call_step']-self.summary_skip_last_k) or (self.summary_mode == 'length' and status['previous_length'] > self.summary_context_length): |
|
|
|
if input_list[idx]['role'] == 'assistant': |
|
if 'Tool_RAG' in str(input_list[idx]['tool_calls']): |
|
this_thought_calls = None |
|
else: |
|
if len(function_response) != 0: |
|
print("internal summary") |
|
status['summarized_step'] += 1 |
|
result_summary = self.run_summary_agent( |
|
thought_calls=this_thought_calls, |
|
function_response=function_response, |
|
temperature=0.1, |
|
max_new_tokens=1024, |
|
max_token=99999 |
|
) |
|
|
|
input_list.insert( |
|
last_call_idx+1, {'role': 'tool', 'content': result_summary}) |
|
status['summarized_index'] = last_call_idx + 2 |
|
idx += 1 |
|
|
|
last_call_idx = idx |
|
this_thought_calls = input_list[idx]['content'] + \ |
|
input_list[idx]['tool_calls'] |
|
function_response = '' |
|
|
|
elif input_list[idx]['role'] == 'tool' and this_thought_calls is not None: |
|
function_response += input_list[idx]['content'] |
|
del input_list[idx] |
|
idx -= 1 |
|
|
|
else: |
|
break |
|
idx += 1 |
|
|
|
if len(function_response) != 0: |
|
status['summarized_step'] += 1 |
|
result_summary = self.run_summary_agent( |
|
thought_calls=this_thought_calls, |
|
function_response=function_response, |
|
temperature=0.1, |
|
max_new_tokens=1024, |
|
max_token=99999 |
|
) |
|
|
|
tool_calls = json.loads(input_list[last_call_idx]['tool_calls']) |
|
for tool_call in tool_calls: |
|
del tool_call['call_id'] |
|
input_list[last_call_idx]['tool_calls'] = json.dumps(tool_calls) |
|
input_list.insert( |
|
last_call_idx+1, {'role': 'tool', 'content': result_summary}) |
|
status['summarized_index'] = last_call_idx + 2 |
|
|
|
return status |
|
|
|
|
|
|
|
|
|
def update_parameters(self, **kwargs): |
|
for key, value in kwargs.items(): |
|
if hasattr(self, key): |
|
setattr(self, key, value) |
|
|
|
|
|
updated_attributes = {key: value for key, |
|
value in kwargs.items() if hasattr(self, key)} |
|
return updated_attributes |
|
|
|
def run_gradio_chat(self, message: str, |
|
history: list, |
|
temperature: float, |
|
max_new_tokens: int, |
|
max_token: int, |
|
call_agent: bool, |
|
conversation: gr.State, |
|
max_round: int = 20, |
|
seed: int = None, |
|
call_agent_level: int = 0, |
|
sub_agent_task: str = None) -> str: |
|
""" |
|
Generate a streaming response using the llama3-8b model. |
|
Args: |
|
message (str): The input message. |
|
history (list): The conversation history used by ChatInterface. |
|
temperature (float): The temperature for generating the response. |
|
max_new_tokens (int): The maximum number of new tokens to generate. |
|
Returns: |
|
str: The generated response. |
|
""" |
|
print("\033[1;32;40mstart\033[0m") |
|
print("len(message)", len(message)) |
|
if len(message) <= 10: |
|
yield "Hi, I am TxAgent, an assistant for answering biomedical questions. Please provide a valid message with a string longer than 10 characters." |
|
return "Please provide a valid message." |
|
outputs = [] |
|
outputs_str = '' |
|
last_outputs = [] |
|
|
|
picked_tools_prompt, call_agent_level = self.initialize_tools_prompt( |
|
call_agent, |
|
call_agent_level, |
|
message) |
|
|
|
conversation = self.initialize_conversation( |
|
message, |
|
conversation=conversation, |
|
history=history) |
|
history = [] |
|
|
|
next_round = True |
|
function_call_messages = [] |
|
current_round = 0 |
|
enable_summary = False |
|
last_status = {} |
|
token_overflow = False |
|
if self.enable_checker: |
|
checker = ReasoningTraceChecker( |
|
message, conversation, init_index=len(conversation)) |
|
|
|
try: |
|
while next_round and current_round < max_round: |
|
current_round += 1 |
|
if len(last_outputs) > 0: |
|
function_call_messages, picked_tools_prompt, special_tool_call, current_gradio_history = yield from self.run_function_call_stream( |
|
last_outputs, return_message=True, |
|
existing_tools_prompt=picked_tools_prompt, |
|
message_for_call_agent=message, |
|
call_agent=call_agent, |
|
call_agent_level=call_agent_level, |
|
temperature=temperature) |
|
history.extend(current_gradio_history) |
|
if special_tool_call == 'Finish': |
|
yield history |
|
next_round = False |
|
conversation.extend(function_call_messages) |
|
return function_call_messages[0]['content'] |
|
elif special_tool_call == 'RequireClarification' or special_tool_call == 'DirectResponse': |
|
history.append( |
|
ChatMessage(role="assistant", content=history[-1].content)) |
|
yield history |
|
next_round = False |
|
return history[-1].content |
|
if (self.enable_summary or token_overflow) and not call_agent: |
|
if token_overflow: |
|
print("token_overflow, using summary") |
|
enable_summary = True |
|
last_status = self.function_result_summary( |
|
conversation, status=last_status, |
|
enable_summary=enable_summary) |
|
if function_call_messages is not None: |
|
conversation.extend(function_call_messages) |
|
formated_md_function_call_messages = tool_result_format( |
|
function_call_messages) |
|
yield history |
|
else: |
|
next_round = False |
|
conversation.extend( |
|
[{"role": "assistant", "content": ''.join(last_outputs)}]) |
|
return ''.join(last_outputs).replace("</s>", "") |
|
if self.enable_checker: |
|
good_status, wrong_info = checker.check_conversation() |
|
if not good_status: |
|
next_round = False |
|
print("Internal error in reasoning: " + wrong_info) |
|
break |
|
last_outputs = [] |
|
last_outputs_str, token_overflow = self.llm_infer( |
|
messages=conversation, |
|
temperature=temperature, |
|
tools=picked_tools_prompt, |
|
skip_special_tokens=False, |
|
max_new_tokens=max_new_tokens, |
|
max_token=max_token, |
|
seed=seed, |
|
check_token_status=True) |
|
last_thought = last_outputs_str.split("[TOOL_CALLS]")[0] |
|
for each in history: |
|
if each.metadata is not None: |
|
each.metadata['status'] = 'done' |
|
if '[FinalAnswer]' in last_thought: |
|
final_thought, final_answer = last_thought.split( |
|
'[FinalAnswer]') |
|
history.append( |
|
ChatMessage(role="assistant", |
|
content=final_thought.strip()) |
|
) |
|
yield history |
|
history.append( |
|
ChatMessage( |
|
role="assistant", content="**Answer**:\n"+final_answer.strip()) |
|
) |
|
yield history |
|
else: |
|
history.append(ChatMessage( |
|
role="assistant", content=last_thought)) |
|
yield history |
|
|
|
last_outputs.append(last_outputs_str) |
|
|
|
if next_round: |
|
if self.force_finish: |
|
last_outputs_str = self.get_answer_based_on_unfinished_reasoning( |
|
conversation, temperature, max_new_tokens, max_token) |
|
for each in history: |
|
if each.metadata is not None: |
|
each.metadata['status'] = 'done' |
|
if '[FinalAnswer]' in last_thought: |
|
final_thought, final_answer = last_thought.split( |
|
'[FinalAnswer]') |
|
history.append( |
|
ChatMessage(role="assistant", |
|
content=final_thought.strip()) |
|
) |
|
yield history |
|
history.append( |
|
ChatMessage( |
|
role="assistant", content="**Answer**:\n"+final_answer.strip()) |
|
) |
|
yield history |
|
else: |
|
yield "The number of rounds exceeds the maximum limit!" |
|
|
|
except Exception as e: |
|
print(f"Error: {e}") |
|
if self.force_finish: |
|
last_outputs_str = self.get_answer_based_on_unfinished_reasoning( |
|
conversation, |
|
temperature, |
|
max_new_tokens, |
|
max_token) |
|
for each in history: |
|
if each.metadata is not None: |
|
each.metadata['status'] = 'done' |
|
if '[FinalAnswer]' in last_thought or '"name": "Finish",' in last_outputs_str: |
|
if '[FinalAnswer]' in last_thought: |
|
final_thought, final_answer = last_thought.split('[FinalAnswer]', 1) |
|
else: |
|
final_thought = "" |
|
final_answer = last_thought |
|
history.append( |
|
ChatMessage(role="assistant", |
|
content=final_thought.strip()) |
|
) |
|
yield history |
|
history.append( |
|
ChatMessage( |
|
role="assistant", content="**Answer**:\n" + final_answer.strip()) |
|
) |
|
yield history |
|
else: |
|
return None |
|
|