Spaces:
Runtime error
Runtime error
Commit
·
0833a56
1
Parent(s):
574dd01
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import time
|
3 |
+
from pathlib import Path
|
4 |
+
import contextlib
|
5 |
+
|
6 |
+
logging.basicConfig(
|
7 |
+
level=logging.INFO,
|
8 |
+
format="%(asctime)s - %(levelname)s - %(message)s",
|
9 |
+
)
|
10 |
+
|
11 |
+
|
12 |
+
import gradio as gr
|
13 |
+
import nltk
|
14 |
+
import torch
|
15 |
+
|
16 |
+
from pdf2text import *
|
17 |
+
|
18 |
+
_here = Path(__file__).parent
|
19 |
+
|
20 |
+
nltk.download("stopwords") # TODO=find where this requirement originates from
|
21 |
+
|
22 |
+
|
23 |
+
def load_uploaded_file(file_obj, temp_dir: Path = None):
|
24 |
+
"""
|
25 |
+
load_uploaded_file - process an uploaded file
|
26 |
+
Args:
|
27 |
+
file_obj (POTENTIALLY list): Gradio file object inside a list
|
28 |
+
Returns:
|
29 |
+
str, the uploaded file contents
|
30 |
+
"""
|
31 |
+
|
32 |
+
# check if mysterious file object is a list
|
33 |
+
if isinstance(file_obj, list):
|
34 |
+
file_obj = file_obj[0]
|
35 |
+
file_path = Path(file_obj.name)
|
36 |
+
|
37 |
+
if temp_dir is None:
|
38 |
+
_temp_dir = _here / "temp"
|
39 |
+
_temp_dir.mkdir(exist_ok=True)
|
40 |
+
|
41 |
+
try:
|
42 |
+
pdf_bytes_obj = open(file_path, "rb").read()
|
43 |
+
temp_path = temp_dir / file_path.name if temp_dir else file_path
|
44 |
+
# save to PDF file
|
45 |
+
with open(temp_path, "wb") as f:
|
46 |
+
f.write(pdf_bytes_obj)
|
47 |
+
logging.info(f"The uploaded file saved to {temp_path}")
|
48 |
+
return str(temp_path.resolve())
|
49 |
+
|
50 |
+
except Exception as e:
|
51 |
+
logging.error(f"Trying to load file with path {file_path}, error: {e}")
|
52 |
+
print(f"Trying to load file with path {file_path}, error: {e}")
|
53 |
+
return None
|
54 |
+
|
55 |
+
|
56 |
+
def convert_PDF(
|
57 |
+
pdf_obj,
|
58 |
+
language: str = "en",
|
59 |
+
max_pages=20,
|
60 |
+
):
|
61 |
+
"""
|
62 |
+
convert_PDF - convert a PDF file to text
|
63 |
+
Args:
|
64 |
+
pdf_bytes_obj (bytes): PDF file contents
|
65 |
+
language (str, optional): Language to use for OCR. Defaults to "en".
|
66 |
+
Returns:
|
67 |
+
str, the PDF file contents as text
|
68 |
+
"""
|
69 |
+
# clear local text cache
|
70 |
+
rm_local_text_files()
|
71 |
+
global ocr_model
|
72 |
+
st = time.perf_counter()
|
73 |
+
if isinstance(pdf_obj, list):
|
74 |
+
pdf_obj = pdf_obj[0]
|
75 |
+
file_path = Path(pdf_obj.name)
|
76 |
+
if not file_path.suffix == ".pdf":
|
77 |
+
logging.error(f"File {file_path} is not a PDF file")
|
78 |
+
|
79 |
+
html_error = f"""
|
80 |
+
<div style="color: red; font-size: 20px; font-weight: bold;">
|
81 |
+
File {file_path} is not a PDF file. Please upload a PDF file.
|
82 |
+
</div>
|
83 |
+
"""
|
84 |
+
return "File is not a PDF file", html_error, None
|
85 |
+
|
86 |
+
conversion_stats = convert_PDF_to_Text(
|
87 |
+
file_path,
|
88 |
+
ocr_model=ocr_model,
|
89 |
+
max_pages=max_pages,
|
90 |
+
)
|
91 |
+
converted_txt = conversion_stats["converted_text"]
|
92 |
+
num_pages = conversion_stats["num_pages"]
|
93 |
+
was_truncated = conversion_stats["truncated"]
|
94 |
+
# if alt_lang: # TODO: fix this
|
95 |
+
|
96 |
+
rt = round((time.perf_counter() - st) / 60, 2)
|
97 |
+
print(f"Runtime: {rt} minutes")
|
98 |
+
html = ""
|
99 |
+
if was_truncated:
|
100 |
+
html += f"<p>WARNING - PDF was truncated to {max_pages} pages</p>"
|
101 |
+
html += f"<p>Runtime: {rt} minutes on CPU for {num_pages} pages</p>"
|
102 |
+
|
103 |
+
_output_name = f"RESULT_{file_path.stem}_OCR.txt"
|
104 |
+
with open(_output_name, "w", encoding="utf-8", errors="ignore") as f:
|
105 |
+
f.write(converted_txt)
|
106 |
+
|
107 |
+
return converted_txt, html, _output_name
|
108 |
+
|
109 |
+
|
110 |
+
if __name__ == "__main__":
|
111 |
+
logging.info("Starting app")
|
112 |
+
|
113 |
+
use_GPU = torch.cuda.is_available()
|
114 |
+
logging.info(f"Using GPU status: {use_GPU}")
|
115 |
+
logging.info("Loading OCR model")
|
116 |
+
with contextlib.redirect_stdout(None):
|
117 |
+
ocr_model = ocr_predictor(
|
118 |
+
"db_resnet50",
|
119 |
+
"crnn_mobilenet_v3_large",
|
120 |
+
pretrained=True,
|
121 |
+
assume_straight_pages=True,
|
122 |
+
)
|
123 |
+
|
124 |
+
# define pdf bytes as None
|
125 |
+
pdf_obj = _here / "exampler.pdf"
|
126 |
+
pdf_obj = str(pdf_obj.resolve())
|
127 |
+
_temp_dir = _here / "temp"
|
128 |
+
_temp_dir.mkdir(exist_ok=True)
|
129 |
+
|
130 |
+
logging.info("starting demo")
|
131 |
+
demo = gr.Blocks()
|
132 |
+
|
133 |
+
with demo:
|
134 |
+
|
135 |
+
gr.Markdown("# PDF to Text")
|
136 |
+
gr.Markdown(
|
137 |
+
"A basic demo for end-to-end text detection and recognition where the input will be in pdf format and the result is text conversion using OCR from the [doctr](https://mindee.github.io/doctr/index.html) package"
|
138 |
+
)
|
139 |
+
gr.Markdown("---")
|