Alexvatti commited on
Commit
ebfb422
·
verified ·
1 Parent(s): ea786df

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -61
app.py CHANGED
@@ -3,6 +3,7 @@ import numpy as np
3
  import pandas as pd
4
  import re
5
  from tensorflow.keras.models import Sequential
 
6
  from tensorflow.keras.layers import Dense
7
  from transformers import BertTokenizer, TFBertModel
8
  from sklearn.model_selection import train_test_split
@@ -18,9 +19,6 @@ nltk.download('stopwords')
18
  tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
19
  bert_model = TFBertModel.from_pretrained("bert-base-uncased")
20
 
21
- # Load dataset
22
- file_path = "https://raw.githubusercontent.com/alexvatti/full-stack-data-science/main/NLP-Exercises/Movie-Review/IMDB%20Dataset.csv"
23
- movies_df = pd.read_csv(file_path)
24
 
25
  # Clean text
26
  def remove_tags(txt):
@@ -33,65 +31,9 @@ def remove_stop_words(txt):
33
  stop_words = set(stopwords.words('english'))
34
  return ' '.join([word for word in txt.split() if word not in stop_words])
35
 
36
- movies_df['review'] = movies_df['review'].apply(remove_tags)
37
- movies_df['review'] = movies_df['review'].apply(remove_stop_words)
38
- movies_df['Category'] = movies_df['sentiment'].apply(lambda x: 1 if x == 'positive' else 0)
39
 
40
- # Train-test split
41
- X_train, X_test, y_train, y_test = train_test_split(movies_df['review'], movies_df['Category'], test_size=0.2, random_state=42)
42
-
43
- # Convert labels to TensorFlow format
44
- y_train = tf.convert_to_tensor(y_train.values, dtype=tf.float32)
45
- y_test = tf.convert_to_tensor(y_test.values, dtype=tf.float32)
46
-
47
- # Compute BERT embeddings
48
- def bert_embeddings_batch(texts, batch_size=32, max_length=64):
49
- embeddings = []
50
- for i in range(0, len(texts), batch_size):
51
- batch_texts = texts[i:i + batch_size]
52
- inputs = tokenizer(
53
- batch_texts.tolist(),
54
- return_tensors="tf",
55
- padding=True,
56
- truncation=True,
57
- max_length=max_length
58
- )
59
- outputs = bert_model(inputs['input_ids'], attention_mask=inputs['attention_mask'])
60
- cls_embeddings = outputs.last_hidden_state[:, 0, :]
61
- embeddings.append(cls_embeddings.numpy())
62
- return np.vstack(embeddings)
63
-
64
- # Compute embeddings
65
- X_train_embeddings = bert_embeddings_batch(X_train)
66
- X_test_embeddings = bert_embeddings_batch(X_test)
67
-
68
- # Define classifier
69
- classifier = Sequential([
70
- Dense(128, activation='relu', input_shape=(768,)),
71
- Dense(1, activation='sigmoid')
72
- ])
73
-
74
- classifier.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
75
-
76
- # Train classifier
77
- classifier.fit(X_train_embeddings, y_train, epochs=5, batch_size=32, validation_split=0.1)
78
-
79
- # Evaluate
80
- test_loss, test_accuracy = classifier.evaluate(X_test_embeddings, y_test)
81
- print(f"Test Accuracy: {test_accuracy}")
82
-
83
- # Predictions and confusion matrix
84
- y_pred = (classifier.predict(X_test_embeddings) > 0.5).astype("int32")
85
- conf_matrix = confusion_matrix(y_test.numpy(), y_pred)
86
- class_report = classification_report(y_test.numpy(), y_pred)
87
-
88
- print("Confusion Matrix:")
89
- print(conf_matrix)
90
- print("\nClassification Report:")
91
- print(class_report)
92
-
93
- # Save the trained model to a file
94
- #classifier.save("movie_sentiment_model.h5")
95
 
96
  # Single input BERT embeddings
97
  def bert_embeddings(text, max_length=64):
 
3
  import pandas as pd
4
  import re
5
  from tensorflow.keras.models import Sequential
6
+ from tensorflow.keras.models import load_model
7
  from tensorflow.keras.layers import Dense
8
  from transformers import BertTokenizer, TFBertModel
9
  from sklearn.model_selection import train_test_split
 
19
  tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
20
  bert_model = TFBertModel.from_pretrained("bert-base-uncased")
21
 
 
 
 
22
 
23
  # Clean text
24
  def remove_tags(txt):
 
31
  stop_words = set(stopwords.words('english'))
32
  return ' '.join([word for word in txt.split() if word not in stop_words])
33
 
 
 
 
34
 
35
+ # Load the trained model
36
+ classifier=load_model('movie_sentiment_model.h5')
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37
 
38
  # Single input BERT embeddings
39
  def bert_embeddings(text, max_length=64):