Alexvatti commited on
Commit
3a5c4f5
·
verified ·
1 Parent(s): 4ef590a

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +90 -0
app.py ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import gradio as gr
3
+ import gradio.inputs
4
+
5
+ import numpy as np
6
+ import pandas as pd
7
+
8
+ from sklearn.model_selection import train_test_split
9
+ from simpletransformers.classification import ClassificationModel
10
+ from sklearn.metrics import classification_report,confusion_matrix
11
+ import re
12
+ import nltk
13
+ from nltk.corpus import stopwords
14
+ nltk.download('stopwords')
15
+
16
+ file_path = "https://raw.githubusercontent.com/alexvatti/full-stack-data-science/main/NLP-Exercises/Movie-Review/IMDB%20Dataset.csv"
17
+ movies_df=pd.read_csv(file_path)
18
+
19
+ def remove_tags(txt):
20
+ removelist = "" # Add any characters you'd like to keep
21
+ # Remove HTML tags
22
+ result = re.sub(r'<[^>]+>', '', txt)
23
+ # Remove URLs
24
+ result = re.sub(r'https?://\S+', '', txt)
25
+ # Remove non-alphanumeric characters (except for those in the removelist)
26
+ result = re.sub(r'[^a-zA-Z0-9' + removelist + r'\s]', ' ', txt)
27
+ # Convert to lowercase
28
+ result = result.lower()
29
+ return result
30
+
31
+ def remove_stop_wrods(txt):
32
+ stop_words = set(stopwords.words('english'))
33
+ return ' '.join([word for word in txt.split() if word not in (stop_words)])
34
+
35
+ movies_df['review'] = movies_df['review'].apply(remove_tags)
36
+ movies_df['review'] = movies_df['review'].apply(remove_stop_wrods)
37
+ movies_df["Category"]=movies_df["sentiment"].apply(lambda x: 1 if x=='positive' else 0)
38
+
39
+ X_train,X_test,y_train,y_test=train_test_split(movies_df['review'],movies_df["Category"],test_size=0.2,random_state=42)
40
+ # Prepare the training and evaluation DataFrames for Simple Transformers
41
+ train_df = pd.DataFrame({"text": X_train, "labels": y_train})
42
+ eval_df = pd.DataFrame({"text": X_test, "labels": y_test})
43
+
44
+
45
+ # Create a ClassificationModel
46
+ model = ClassificationModel("bert", "bert-base-uncased", use_cuda=True) # Set use_cuda=True if you have a GPU
47
+
48
+ # Train the model
49
+ model.train_model(train_df)
50
+
51
+ # Evaluate the model
52
+ result, model_outputs, wrong_predictions = model.eval_model(eval_df)
53
+ model.save_model("sentiment_model")
54
+
55
+ # Step 4: Load the Model for Prediction
56
+ # To use the model later, reload it from the saved directory
57
+ loaded_model = ClassificationModel("bert", "sentiment_model", use_cuda=True)
58
+
59
+ # Step 5: Predict Sentiment for a New Review
60
+ test_review = "This movie was absolutely fantastic! The acting was top-notch."
61
+ review=remove_tags(test_review)
62
+ review=remove_stop_wrods(review)
63
+ predictions, raw_outputs = loaded_model.predict(review)
64
+ print("Predictions:", predictions) # Outputs the label (e.g., 1 for positive, 0 for negative)
65
+ print("Raw Outputs:", raw_outputs) # Outputs the raw model scores
66
+
67
+ test_review ="I hated this movie. It was a complete waste of time."
68
+ review=remove_tags(test_review)
69
+ review=remove_stop_wrods(review)
70
+ predictions, raw_outputs = loaded_model.predict(review)
71
+
72
+ print("Predictions:", predictions) # Outputs the label (e.g., 1 for positive, 0 for negative)
73
+ print("Raw Outputs:", raw_outputs) # Outputs the raw model scores
74
+
75
+ def fn(test_review):
76
+ review=remove_tags(test_review)
77
+ review=remove_stop_wrods(review)
78
+ predictions, raw_outputs = loaded_model.predict(review)
79
+ return "Positive" if predictions==1 else "Negative"
80
+
81
+ description = "Give a review of a movie that you like(or hate, sarcasm intended XD) and the model will let you know just how much your review truely reflects your emotions. "
82
+ here = gr.Interface(fn,
83
+ inputs= gradio.inputs.Textbox( lines=1, placeholder=None, default="", label=None),
84
+ outputs='text',
85
+ title="Sentiment analysis of movie reviews",
86
+ description=description,
87
+ theme="peach",
88
+ allow_flagging="auto",
89
+ flagging_dir='flagging records')
90
+ here.launch(inline=False)