Alexvatti commited on
Commit
e4c18ca
·
verified ·
1 Parent(s): cd33515

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +22 -5
app.py CHANGED
@@ -10,6 +10,7 @@ import shutil
10
  import rasterio
11
  import cv2
12
  import tensorflow as tf
 
13
 
14
  # Configuration
15
  HEIGHT = WIDTH = 256
@@ -106,7 +107,14 @@ def normalizeImages(images, typeData):
106
  print("(INFO..) Normalization Image Done")
107
  return np.array(normalized_images)
108
 
109
-
 
 
 
 
 
 
 
110
  # Streamlit App Title
111
  st.title("Satellite Mining Segmentation: SAR + Optic Image Inference")
112
 
@@ -120,19 +128,28 @@ num_samples = st.slider("Number of test samples to visualize", 1, 10, 3)
120
  if sar_file is not None and optic_file is not None and mask_file is not None:
121
  st.success("All files uploaded successfully!")
122
  st.write(f"Number of samples selected for visualization: {num_samples}")
 
 
 
 
 
 
 
 
 
 
123
  else:
124
  st.warning("Please upload all three .tiff files to proceed.")
125
 
126
- sarImages = [sar_file]
127
- opticImages = [optic_file]
128
- masks = [mask_file]
129
  model_path = "Residual_UNET_Bilinear.keras"
130
 
131
 
132
  if st.button("Run Inference"):
133
  with st.spinner("Loading data and model..."):
134
 
135
-
136
  sar_images = readImages(sarImages, typeData='s', width=WIDTH, height=HEIGHT)
137
  optic_images = readImages(opticImages, typeData='o', width=WIDTH, height=HEIGHT)
138
  masks = readImages(masks, typeData='m', width=WIDTH, height=HEIGHT)
 
10
  import rasterio
11
  import cv2
12
  import tensorflow as tf
13
+ import tempfile
14
 
15
  # Configuration
16
  HEIGHT = WIDTH = 256
 
107
  print("(INFO..) Normalization Image Done")
108
  return np.array(normalized_images)
109
 
110
+
111
+
112
+ def save_uploaded_file(uploaded_file, suffix=".tif"):
113
+ with tempfile.NamedTemporaryFile(delete=False, suffix=suffix) as tmp:
114
+ tmp.write(uploaded_file.read())
115
+ return tmp.name
116
+
117
+
118
  # Streamlit App Title
119
  st.title("Satellite Mining Segmentation: SAR + Optic Image Inference")
120
 
 
128
  if sar_file is not None and optic_file is not None and mask_file is not None:
129
  st.success("All files uploaded successfully!")
130
  st.write(f"Number of samples selected for visualization: {num_samples}")
131
+ sar_path = save_uploaded_file(sar_file, suffix=".tif")
132
+ optic_path = save_uploaded_file(optic_file, suffix=".tif")
133
+ mask_path = save_uploaded_file(mask_file, suffix=".tif")
134
+
135
+ st.write("Temporary paths created for inference:")
136
+ st.code(f"SAR Path: {sar_path}")
137
+ st.code(f"Optic Path: {optic_path}")
138
+ st.code(f"Mask Path: {mask_path}")
139
+
140
+
141
  else:
142
  st.warning("Please upload all three .tiff files to proceed.")
143
 
144
+ sarImages = [sar_path]
145
+ opticImages = [optic_path]
146
+ masks = [mask_path]
147
  model_path = "Residual_UNET_Bilinear.keras"
148
 
149
 
150
  if st.button("Run Inference"):
151
  with st.spinner("Loading data and model..."):
152
 
 
153
  sar_images = readImages(sarImages, typeData='s', width=WIDTH, height=HEIGHT)
154
  optic_images = readImages(opticImages, typeData='o', width=WIDTH, height=HEIGHT)
155
  masks = readImages(masks, typeData='m', width=WIDTH, height=HEIGHT)