Alexvatti's picture
Update app.py
fd8076b verified
import streamlit as st
import joblib
html_temp = """
<div style="background-color:lightgreen;padding:10px">
<h2 style="color:white;text-align:center;">Crop Yield Prediction </h2>
</div>
"""
st.markdown(html_temp, unsafe_allow_html=True)
image_url="https://miro.medium.com/v2/resize:fit:1358/0*k-lYNf3gZ1M2u6AN"
st.image(image_url, use_container_width=True)
# Area
options_Area = ['Albania', 'Algeria', 'Angola', 'Argentina', 'Armenia','Australia', 'Austria', 'Azerbaijan', 'Bahamas', 'Bahrain',
'Bangladesh', 'Belarus', 'Belgium', 'Botswana', 'Brazil','Bulgaria', 'Burkina Faso', 'Burundi', 'Cameroon', 'Canada',
'Central African Republic', 'Chile', 'Colombia', 'Croatia',
'Denmark', 'Dominican Republic', 'Ecuador', 'Egypt', 'El Salvador','Eritrea', 'Estonia', 'Finland', 'France', 'Germany', 'Ghana',
'Greece', 'Guatemala', 'Guinea', 'Guyana', 'Haiti', 'Honduras',
'Hungary', 'India', 'Indonesia', 'Iraq', 'Ireland', 'Italy',
'Jamaica', 'Japan', 'Kazakhstan', 'Kenya', 'Latvia', 'Lebanon',
'Lesotho', 'Libya', 'Lithuania', 'Madagascar', 'Malawi',
'Malaysia', 'Mali', 'Mauritania', 'Mauritius', 'Mexico',
'Montenegro', 'Morocco', 'Mozambique', 'Namibia', 'Nepal',
'Netherlands', 'New Zealand', 'Nicaragua', 'Niger', 'Norway',
'Pakistan', 'Papua New Guinea', 'Peru', 'Poland', 'Portugal',
'Qatar', 'Romania', 'Rwanda', 'Saudi Arabia', 'Senegal',
'Slovenia', 'South Africa', 'Spain', 'Sri Lanka', 'Sudan',
'Suriname', 'Sweden', 'Switzerland', 'Tajikistan', 'Thailand',
'Tunisia', 'Turkey', 'Uganda', 'Ukraine', 'United Kingdom',
'Uruguay', 'Zambia', 'Zimbabwe']
Area= st.selectbox('Choose an Area:', options_Area)
Area_value=options_Area.index(Area)
# Item
options_Item =['Maize','Potatoes', 'Rice, paddy', 'Sorghum', 'Soybeans',
'Wheat','Cassava', 'Sweet potatoes', 'Plantains and others', 'Yams']
Item= st.selectbox('Choose a Item:', options_Item)
Item_value=options_Item.index(Item)
# average_rain_fall_mm_per_year
avg_rainfall=st.slider('Slide The value to get Avg Rainfall',min_value=51,max_value=3240,value=51)
# Pesticides_tonnes
pes_tonnes=st.slider('Slide The value to get Pesticides in Tonnes',min_value=1,max_value=367778,value=1)
# Avg Temp
avg_temp=st.slider('Slide The value to get Avg Temperature',min_value=1,max_value=30,value=1)
model=joblib.load("crop_yield_model_rf.joblib")
if st.button("Enter"):
output=model.predict([[Area_value,Item_value,avg_rainfall,pes_tonnes,avg_temp]])
st.write("The Predicted Value of Yield:",output)