Spaces:
Build error
Build error
# coding=utf-8 | |
# Copyright 2023 Stability AI, EleutherAI, and The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# | |
# This code is based off the following work: | |
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py | |
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py | |
""" PyTorch StableLM-Alpha model. """ | |
from typing import Optional, Tuple, Union | |
import math | |
import torch | |
import torch.utils.checkpoint | |
from torch import nn | |
from torch.nn import CrossEntropyLoss | |
from transformers.modeling_outputs import ( | |
BaseModelOutputWithPast, | |
CausalLMOutputWithPast, | |
) | |
from transformers.modeling_utils import PreTrainedModel | |
from transformers.utils import logging | |
from .configuration_stablelm_alpha import StableLMAlphaConfig | |
logger = logging.get_logger(__name__) | |
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None): | |
"""Expands attention_mask from `[batch_size, seq_len]` to `[batch_size, 1, tgt_seq_len, src_seq_len]`.""" | |
batch_size, src_len = mask.size() | |
tgt_len = tgt_len if tgt_len is not None else src_len | |
expanded_mask = mask[:, None, None, :].expand(batch_size, 1, tgt_len, src_len).to(dtype) | |
inverted_mask = 1.0 - expanded_mask | |
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min) | |
class LayerNorm(nn.LayerNorm): | |
def __init__(self, normalized_shape: torch.Size, bias: bool = True, **kwargs): | |
r""" | |
use_cache (`bool`, default = True): whether to use the bias term. | |
""" | |
super().__init__(normalized_shape, **kwargs) | |
if not bias: | |
self.bias = None | |
class DecoderLayer(nn.Module): | |
def __init__(self, config: StableLMAlphaConfig): | |
super().__init__() | |
self.norm = LayerNorm(config.hidden_size, eps=config.norm_eps) | |
self.attention = Attention(config) | |
self.mlp = MLP(config) | |
def forward( | |
self, | |
hidden_states: Optional[torch.FloatTensor], | |
attention_mask: Optional[torch.FloatTensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_value: Optional[Tuple[torch.Tensor]] = None, | |
output_attentions: Optional[bool] = False, | |
use_cache: Optional[bool] = False, | |
) -> Union[Tuple[torch.Tensor], Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]]]: | |
residual = hidden_states | |
# Pre-Norm | |
hidden_states = self.norm(hidden_states) | |
# Self-Attention | |
attn_output, attn_weights, present_key_value = self.attention( | |
hidden_states=hidden_states, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_value=past_key_value, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
) | |
# Feed-forward | |
mlp_output = self.mlp(hidden_states) | |
hidden_states = residual + attn_output + mlp_output | |
outputs = (hidden_states,) | |
if output_attentions: | |
outputs += (attn_weights,) | |
if use_cache: | |
outputs += (present_key_value,) | |
return outputs # hidden_states, (optional: attn_weights), (optional: present_key_value) | |
class MLP(nn.Module): | |
def __init__(self, config: StableLMAlphaConfig): | |
super().__init__() | |
hidden_size = config.hidden_size | |
multiple_of = 256 | |
ff_dim = int(8 * hidden_size / 3) | |
intermediate_size = multiple_of * ((ff_dim + multiple_of - 1) // multiple_of) | |
self.gate_proj = torch.nn.Linear(hidden_size, 2 * intermediate_size, bias=False) | |
self.out_proj = nn.Linear(intermediate_size, hidden_size, bias=False) | |
self.act = nn.SiLU() | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
ff, ff_gate = self.gate_proj(x).chunk(2, dim=-1) | |
return self.out_proj(ff * self.act(ff_gate)) | |
class RotaryEmbedding(torch.nn.Module): | |
def __init__( | |
self, | |
dim: int, | |
max_position_embeddings: int, | |
base: int = 10_000, | |
device: Optional[torch.device] = None, | |
): | |
super().__init__() | |
self.dim = dim | |
self.max_position_embeddings = max_position_embeddings | |
self.base = base | |
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim)) | |
self.register_buffer("inv_freq", inv_freq, persistent=False) | |
# Build here to make `torch.jit.trace` work. | |
self._set_cos_sin_cache( | |
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype() | |
) | |
def _set_cos_sin_cache(self, seq_len: int, device: torch.device, dtype: torch.dtype): | |
self.max_seq_len_cached = seq_len | |
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) | |
freqs = torch.outer(t, self.inv_freq) | |
# Different from paper, but it uses a different permutation in order to obtain the same calculation | |
emb = torch.cat((freqs, freqs), dim=-1) | |
self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False) | |
self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False) | |
def forward(self, x: torch.Tensor, seq_len: Optional[int] = None): | |
# x: [batch_size, num_heads, seq_len, head_size] | |
if seq_len > self.max_seq_len_cached: | |
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=torch.get_default_dtype()) | |
return ( | |
self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype), | |
self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype), | |
) | |
def rotate_half(x: torch.Tensor): | |
"""Rotates half the hidden dims of the input.""" | |
x1, x2 = torch.chunk(x, 2, dim=-1) | |
return torch.cat((-x2, x1), dim=-1) | |
def apply_rotary_pos_emb(q, k, cos, sin, position_ids): | |
# The first two dimensions of cos and sin are always 1, so we can `squeeze` them. | |
cos = cos.squeeze(1).squeeze(0) # [seq_len, dim] | |
sin = sin.squeeze(1).squeeze(0) # [seq_len, dim] | |
cos = cos[position_ids].unsqueeze(1) # [batch_size, 1, seq_len, dim] | |
sin = sin[position_ids].unsqueeze(1) # [batch_size, 1, seq_len, dim] | |
q_embed = (q * cos) + (rotate_half(q) * sin) | |
k_embed = (k * cos) + (rotate_half(k) * sin) | |
return q_embed, k_embed | |
class Attention(nn.Module): | |
def __init__(self, config: StableLMAlphaConfig): | |
super().__init__() | |
self.config = config | |
self.hidden_size = config.hidden_size | |
self.num_heads = config.num_heads | |
self.head_dim = self.hidden_size // self.num_heads | |
self.max_position_embeddings = config.max_position_embeddings | |
if self.hidden_size % self.num_heads != 0: | |
raise ValueError( | |
"`hidden_size` is not divisble by the number of attention heads! Make sure to update them" | |
) | |
self.qkv_proj = nn.Linear(self.hidden_size, 3 * self.hidden_size, bias=False) | |
self.out_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False) | |
self._init_rope() | |
def _init_rope(self): | |
self.rotary_ndims = int(self.head_dim * self.config.rotary_pct) | |
self.rotary_emb = RotaryEmbedding( | |
self.rotary_ndims, | |
max_position_embeddings=self.config.max_position_embeddings, | |
base=self.config.rotary_emb_base, | |
) | |
def forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
attention_mask: torch.FloatTensor, | |
position_ids: torch.LongTensor, | |
past_key_value: Optional[Tuple[torch.Tensor]] = None, | |
output_attentions: Optional[bool] = False, | |
use_cache: Optional[bool] = False, | |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
has_past_key_value = past_key_value is not None | |
# Compute QKV | |
# [batch_size, seq_len, (num_heads * 3 * head_dim)] | |
qkv = self.qkv_proj(hidden_states) | |
# [batch_size, seq_len, num_heads, 3 * head_dim] | |
new_qkv_shape = qkv.size()[:-1] + (self.num_heads, 3 * self.head_dim) | |
qkv = qkv.view(*new_qkv_shape) | |
# 3 * [batch_size, num_heads, seq_len, head_dim] | |
query = qkv[..., : self.head_dim].permute(0, 2, 1, 3) | |
key = qkv[..., self.head_dim:(2 * self.head_dim)].permute(0, 2, 1, 3) | |
value = qkv[..., (2 * self.head_dim):].permute(0, 2, 1, 3) | |
# Compute rotary embeddings on rotary_ndims | |
# [batch_size, num_heads, seq_len, rotary_ndims] | |
query_rot = query[..., :self.rotary_ndims] | |
query_pass = query[..., self.rotary_ndims:] | |
key_rot = key[..., :self.rotary_ndims] | |
key_pass = key[..., self.rotary_ndims:] | |
# Compute token offset for rotary embeddings (when decoding) | |
kv_seq_len = key.shape[-2] | |
if has_past_key_value: | |
kv_seq_len += past_key_value[0].shape[-2] | |
# Add rotary embeddings to query and key | |
cos, sin = self.rotary_emb(value, seq_len=kv_seq_len) | |
query, key = apply_rotary_pos_emb(query_rot, key_rot, cos, sin, position_ids) | |
# Concatenate rotary embeddings with pass-through query and key | |
# [batch_size, num_heads, seq_len, head_dim] | |
query = torch.cat((query, query_pass), dim=-1) | |
key = torch.cat((key, key_pass), dim=-1) | |
# Reuse past key-value states | |
if has_past_key_value: | |
key = torch.cat((past_key_value[0], key), dim=2) | |
value = torch.cat((past_key_value[1], value), dim=2) | |
present_key_value = (key, value) if use_cache else None | |
# [batch_size, num_heads, seq_len, head_dim] | |
query = query.transpose(1, 2).contiguous() | |
key = key.transpose(1, 2).contiguous() | |
value = value.transpose(1, 2).contiguous() | |
# Compute attention | |
softmax_scale = 1 / math.sqrt(self.head_dim) | |
attn_scores = torch.einsum('bthd,bshd->bhts', query, key * softmax_scale) | |
# Apply the attention mask | |
if attention_mask is not None: | |
attn_scores = attn_scores + attention_mask | |
attn_weights = nn.functional.softmax(attn_scores, dim=-1, dtype=torch.float32).to(query.dtype) | |
attn_output = torch.einsum('bhts,bshd->bthd', attn_weights, value) | |
# Merge heads | |
attn_output = attn_output.reshape(attn_output.shape[0], attn_output.shape[1], -1) | |
# Final linear projection | |
attn_output = self.out_proj(attn_output) | |
if not output_attentions: | |
attn_weights = None | |
return attn_output, attn_weights, present_key_value | |
def attention_mask_func(attention_scores: torch.Tensor, ltor_mask: torch.Tensor): | |
attention_scores.masked_fill_(~ltor_mask, torch.finfo(attention_scores.dtype).min) | |
return attention_scores | |
class StableLMAlphaPreTrainedModel(PreTrainedModel): | |
"""An abstract class to handle weights initialization and a simple interface | |
for downloading and loading pretrained models. | |
""" | |
config_class = StableLMAlphaConfig | |
base_model_prefix = "transformer" | |
supports_gradient_checkpointing = True | |
_no_split_modules = ["DecoderLayer"] | |
_skip_keys_device_placement = "past_key_values" | |
def _init_weights(self, module: nn.Module): | |
"""Initialize the weights""" | |
if isinstance(module, nn.Linear): | |
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
if module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, nn.Embedding): | |
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
if module.padding_idx is not None: | |
module.weight.data[module.padding_idx].zero_() | |
elif isinstance(module, nn.LayerNorm): | |
module.bias.data.zero_() | |
module.weight.data.fill_(1.0) | |
def _set_gradient_checkpointing(self, module: nn.Module, value=False): | |
if isinstance(module, StableLMAlphaModel): | |
module.gradient_checkpointing = value | |
def _make_causal_mask( | |
input_ids_shape: torch.Size, | |
dtype: torch.dtype, | |
device: torch.device, | |
past_key_values_length: int = 0 | |
): | |
"""Make causal mask used for bi-directional self-attention.""" | |
batch_size, tgt_len = input_ids_shape | |
mask = torch.full((tgt_len, tgt_len), torch.finfo(torch.float16).min, device=device) | |
mask_cond = torch.arange(mask.size(-1), device=device) | |
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0) | |
mask = mask.to(dtype) | |
if past_key_values_length > 0: | |
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1) | |
return mask[None, None, :, :].expand(batch_size, 1, tgt_len, tgt_len + past_key_values_length) | |
class StableLMAlphaModel(StableLMAlphaPreTrainedModel): | |
def __init__(self, config: StableLMAlphaConfig): | |
super().__init__(config) | |
self.config = config | |
self.embed = nn.Embedding(config.vocab_size, config.hidden_size) | |
self.layers = nn.ModuleList([DecoderLayer(config) for _ in range(config.num_hidden_layers)]) | |
self.final_norm = LayerNorm(config.hidden_size, eps=config.norm_eps) | |
self.gradient_checkpointing = False | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.embed | |
def set_input_embeddings(self, value: nn.Module): | |
self.embed = value | |
# Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask | |
def _prepare_decoder_attention_mask( | |
self, | |
attention_mask: torch.Tensor, | |
input_shape: torch.Size, | |
inputs_embeds: torch.Tensor, | |
past_key_values_length: int, | |
): | |
# Create causal mask | |
# [batch_size, seq_len] -> [batch_size, 1, tgt_seq_len, src_seq_len] | |
combined_attention_mask = None | |
if input_shape[-1] > 1: | |
combined_attention_mask = _make_causal_mask( | |
input_shape, | |
inputs_embeds.dtype, | |
device=inputs_embeds.device, | |
past_key_values_length=past_key_values_length, | |
) | |
if attention_mask is not None: | |
# [batch_size, seq_len] -> [batch_size, 1, tgt_seq_len, src_seq_len] | |
expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to( | |
inputs_embeds.device | |
) | |
combined_attention_mask = ( | |
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask | |
) | |
return combined_attention_mask | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, BaseModelOutputWithPast]: | |
r""" | |
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` | |
with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): | |
Contains precomputed key and value hidden states of the attention blocks. | |
Can be used to speed up decoding. If `past_key_values` are used, the user | |
can optionally input only the last `decoder_input_ids` (those that don't | |
have their past key value states given to this model) of shape `(batch_size, 1)` | |
instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. | |
use_cache (`bool`, *optional*): | |
If set to `True`, `past_key_values` key value states are returned and | |
can be used to speed up decoding (see `past_key_values`). | |
""" | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
use_cache = use_cache if use_cache is not None else self.config.use_cache | |
if input_ids is not None and inputs_embeds is not None: | |
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") | |
elif input_ids is not None: | |
input_shape = input_ids.size() | |
elif inputs_embeds is not None: | |
input_shape = inputs_embeds.size()[:-1] | |
else: | |
raise ValueError("You have to specify either input_ids or inputs_embeds") | |
batch_size, seq_length = input_shape | |
if past_key_values is None: | |
past_key_values_length = 0 | |
past_key_values = tuple([None] * self.config.num_hidden_layers) | |
seq_length_with_past = seq_length | |
else: | |
past_key_values_length = past_key_values[0][0].shape[2] | |
seq_length_with_past = seq_length + past_key_values_length | |
if position_ids is None: | |
device = input_ids.device if input_ids is not None else inputs_embeds.device | |
position_ids = torch.arange(past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device) | |
position_ids = position_ids.unsqueeze(0).view(-1, seq_length) | |
else: | |
position_ids = position_ids.view(-1, seq_length).long() | |
if inputs_embeds is None: | |
inputs_embeds = self.embed(input_ids) | |
# Attention mask. | |
if attention_mask is None: | |
attention_mask = torch.ones( | |
(batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device | |
) | |
attention_mask = self._prepare_decoder_attention_mask( | |
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length | |
) | |
hidden_states = inputs_embeds | |
if self.gradient_checkpointing and self.training: | |
if use_cache: | |
logger.warning( | |
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." | |
) | |
use_cache = False | |
all_hidden_states = () if output_hidden_states else None | |
all_attentions = () if output_attentions else None | |
present_key_values = () if use_cache else None | |
for _, (decoder_layer, past_key_value) in enumerate(zip(self.layers, past_key_values)): | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
if self.gradient_checkpointing and self.training: | |
def create_custom_forward(module): | |
def custom_forward(*inputs): | |
# `None` for `use_cache` | |
return module(*inputs, output_attentions, None) | |
return custom_forward | |
outputs = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(decoder_layer), | |
hidden_states, | |
attention_mask, | |
position_ids, | |
# `None` for `past_key_value` | |
None, | |
) | |
else: | |
outputs = decoder_layer( | |
hidden_states, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_value=past_key_value, | |
output_attentions=output_attentions, | |
use_cache=use_cache, | |
) | |
hidden_states = outputs[0] | |
if output_attentions: | |
all_attentions = all_attentions + (outputs[1],) | |
if use_cache: | |
present_key_values += (outputs[2 if output_attentions else 1],) | |
hidden_states = self.final_norm(hidden_states) | |
# Add last hidden state | |
if output_hidden_states: | |
all_hidden_states += (hidden_states,) | |
present_key_values = present_key_values if use_cache else None | |
if not return_dict: | |
return tuple(v for v in [hidden_states, present_key_values, all_hidden_states, all_attentions] if v is not None) | |
return BaseModelOutputWithPast( | |
last_hidden_state=hidden_states, | |
past_key_values=present_key_values, | |
hidden_states=all_hidden_states, | |
attentions=all_attentions, | |
) | |
class StableLMAlphaForCausalLM(StableLMAlphaPreTrainedModel): | |
_tied_weights_keys = ["lm_head.weight"] | |
def __init__(self, config: StableLMAlphaConfig): | |
super().__init__(config) | |
self.transformer = StableLMAlphaModel(config) | |
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) | |
self.post_init() | |
def get_output_embeddings(self): | |
return self.lm_head | |
def set_output_embeddings(self, new_embeddings: nn.Module): | |
self.lm_head = new_embeddings | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, | |
labels: Optional[torch.LongTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, CausalLMOutputWithPast]: | |
r""" | |
Example: | |
```python | |
>>> from transformers import AutoTokenizer, StableLMAlphaForCausalLM, StableLMAlphaConfig | |
>>> import torch | |
>>> tokenizer = AutoTokenizer.from_pretrained("stabilityai/stablelm-base-alpha-3b-v2", trust_remote_code=True) | |
>>> config = StableLMAlphaConfig.from_pretrained("stabilityai/stablelm-base-alpha-3b-v2") | |
>>> config.is_decoder = True | |
>>> model = StableLMAlphaForCausalLM.from_pretrained("stabilityai/stablelm-base-alpha-3b-v2", config=config) | |
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") | |
>>> outputs = model(**inputs) | |
>>> logits = outputs.logits | |
``` | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.transformer( | |
input_ids, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
inputs_embeds=inputs_embeds, | |
past_key_values=past_key_values, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
hidden_states = outputs[0] | |
logits = self.lm_head(hidden_states) | |
lm_loss = None | |
if labels is not None: | |
# move labels to correct device to enable model parallelism | |
labels = labels.to(logits.device) | |
# we are doing next-token prediction; shift prediction scores and input ids by one | |
shift_logits = logits[:, :-1, :].contiguous() | |
labels = labels[:, 1:].contiguous() | |
loss_fct = CrossEntropyLoss() | |
lm_loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), labels.view(-1)) | |
if not return_dict: | |
output = (logits,) + outputs[1:] | |
return ((lm_loss,) + output) if lm_loss is not None else output | |
return CausalLMOutputWithPast( | |
loss=lm_loss, | |
logits=logits, | |
past_key_values=outputs.past_key_values, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
def prepare_inputs_for_generation( | |
self, | |
input_ids, | |
past_key_values: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
inputs_embeds: Optional[torch.Tensor] = None, | |
**kwargs | |
): | |
# Cut decoder_input_ids if past is used | |
if past_key_values and past_key_values[0] is not None: | |
input_ids = input_ids[:, -1:] | |
position_ids = kwargs.get("position_ids", None) | |
if attention_mask is not None and position_ids is None: | |
# Create position_ids on the fly for batch generation | |
position_ids = attention_mask.long().cumsum(-1) - 1 | |
position_ids.masked_fill_(attention_mask == 0, 1) | |
if past_key_values: | |
position_ids = position_ids[:, -1].unsqueeze(-1) | |
# If `inputs_embeds` are passed, we only want to use them in the 1st generation step | |
if inputs_embeds is not None and past_key_values is None: | |
model_inputs = {"inputs_embeds": inputs_embeds} | |
else: | |
model_inputs = {"input_ids": input_ids} | |
model_inputs.update( | |
{ | |
"attention_mask": attention_mask, | |
"past_key_values": past_key_values, | |
"position_ids": position_ids, | |
} | |
) | |
return model_inputs | |
def _reorder_cache(self, past_key_values: torch.Tensor, beam_idx: int): | |
reordered_past = () | |
for past_key_value in past_key_values: | |
reordered_past += ( | |
tuple(past_state.index_select(0, beam_idx) for past_state in past_key_value[:2]) + past_key_value[2:], | |
) | |
return reordered_past | |
StableLMAlphaConfig.register_for_auto_class() | |
StableLMAlphaForCausalLM.register_for_auto_class("AutoModelForCausalLM") | |