Spaces:
Build error
Build error
text-generation-webui
/
models
/stabilityai_stablelm-base-alpha-7b-v2
/configuration_stablelm_alpha.py
# coding=utf-8 | |
# Copyright 2023 Stability and The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" StableLM β model configuration""" | |
from transformers import PretrainedConfig | |
from transformers.utils import logging | |
logger = logging.get_logger(__name__) | |
STABLE_LM_PRETRAINED_CONFIG_ARCHIVE_MAP = {} | |
class StableLMAlphaConfig(PretrainedConfig): | |
r""" | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
vocab_size (`int`, *optional*, defaults to 50432): | |
Vocabulary size of the StableLM model. Defines the number of different tokens that | |
can be represented by the `inputs_ids` passed when calling [`StableLMAlphaModel`]. | |
hidden_size (`int`, *optional*, defaults to 6144): | |
Dimension of the decoder layers and the pooler layer. | |
num_hidden_layers (`int`, *optional*, defaults to 44): | |
Number of hidden layers in the Transformer decoder. | |
num_heads (`int`, *optional*, defaults to 64): | |
Number of attention heads for each attention layer in the Transformer decoder. | |
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): | |
The non-linear activation function (function or string). | |
rotary_pct (`float`, *optional*, defaults to 0.25): | |
Percentage of hidden dimensions to allocate to rotary embeddings. | |
rotary_emb_base (`int`, *optional*, defaults to 10000) | |
Base for computing rotary embeddings frequency. | |
max_position_embeddings (`int`, *optional*, defaults to 2048): | |
The maximum sequence length that this model might ever be used with. | |
Typically set this to something large just in case (e.g., 512 or 1024 or 2048). | |
initializer_range (`float`, *optional*, defaults to 1e-5): | |
The standard deviation of the truncated_normal_initializer for initializing | |
all weight matrices. | |
norm_eps (`float`, *optional*, defaults to 1e-5): | |
The epsilon used by the normalization layers. | |
use_cache (`bool`, *optional*, defaults to `True`): | |
Whether or not the model should return the last key/values attentions | |
(not used by all models). Only relevant if `config.is_decoder=True`. | |
tie_word_embeddings(`bool`, *optional*, defaults to `False`): | |
Whether to tie weight embeddings | |
Example: | |
```python | |
>>> from transformers import StableLMAlphaConfig, StableLMAlphaModel | |
>>> # Initializing a StableLMAlphaConfig style configuration | |
>>> configuration = StableLMAlphaConfig() | |
>>> # Initializing a model (with random weights) from the style configuration | |
>>> model = StableLMAlphaModel(configuration) # doctest: +SKIP | |
>>> # Accessing the model configuration | |
>>> configuration = model.config # doctest: +SKIP | |
```""" | |
model_type = "stablelm_alpha" | |
keys_to_ignore_at_inference = ["past_key_values"] | |
def __init__( | |
self, | |
vocab_size=50_432, | |
hidden_size=2_560, | |
num_hidden_layers=32, | |
num_heads=32, | |
hidden_act="silu", | |
rotary_pct=0.25, | |
rotary_emb_base=10_000, | |
max_position_embeddings=2_048, | |
initializer_range=0.02, | |
norm_eps=1e-5, | |
use_cache=True, | |
bos_token_id=0, | |
eos_token_id=2, | |
tie_word_embeddings=False, | |
**kwargs, | |
): | |
self.vocab_size = vocab_size | |
self.max_position_embeddings = max_position_embeddings | |
self.hidden_size = hidden_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_heads = num_heads | |
self.hidden_act = hidden_act | |
self.rotary_pct = rotary_pct | |
self.rotary_emb_base = rotary_emb_base | |
self.initializer_range = initializer_range | |
self.norm_eps = norm_eps | |
self.use_cache = use_cache | |
self.tie_word_embeddings = tie_word_embeddings | |
super().__init__( | |
bos_token_id=bos_token_id, | |
eos_token_id=eos_token_id, | |
tie_word_embeddings=tie_word_embeddings, | |
**kwargs, | |
) | |