Alex-23 commited on
Commit
680c81a
·
1 Parent(s): 8a18189

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -48
app.py CHANGED
@@ -11,51 +11,3 @@ model.config
11
  model_random = UNet2DModel(**model.config)
12
  model_random.save_pretrained("my_model")
13
  model_random = UNet2DModel.from_pretrained("my_model")
14
- import torch
15
- torch.manual_seed(0)
16
- noisy_sample = torch.randn(
17
- 1, model.config.in_channels, model.config.sample_size, model.config.sample_size
18
- )
19
- noisy_sample.shape
20
- with torch.no_grad():
21
- noisy_residual = model(sample=noisy_sample, timestep=2).sample
22
- noisy_residual.shape
23
- from diffusers import DDPMScheduler
24
- scheduler = DDPMScheduler.from_config(repo_id)
25
- scheduler.config
26
- scheduler.save_config("my_scheduler")
27
- new_scheduler = DDPMScheduler.from_config("my_scheduler")
28
- less_noisy_sample = scheduler.step(
29
- model_output=noisy_residual, timestep=2, sample=noisy_sample
30
- ).prev_sample
31
- less_noisy_sample.shape
32
- import PIL.Image
33
- import numpy as np
34
- def display_sample(sample, i):
35
- image_processed = sample.cpu().permute(0, 2, 3, 1)
36
- image_processed = (image_processed + 1.0) * 127.5
37
- image_processed = image_processed.numpy().astype(np.uint8)
38
- image_pil = PIL.Image.fromarray(image_processed[0])
39
- display(f"Image at step {i}")
40
- display(image_pil)
41
- model.to("cuda")
42
- noisy_sample = noisy_sample.to("cuda")
43
- import tqdm
44
- sample = noisy_sample
45
- for i, t in enumerate(tqdm.tqdm(scheduler.timesteps)):
46
- with torch.no_grad():
47
- residual = model(sample, t).sample
48
- sample = scheduler.step(residual, t, sample).prev_sample
49
- if (i + 1) % 50 == 0:
50
- display_sample(sample, i + 1)
51
- from diffusers import DDIMScheduler
52
- scheduler = DDIMScheduler.from_config(repo_id)
53
- scheduler.set_timesteps(num_inference_steps=50)
54
- import tqdm
55
- sample = noisy_sample
56
- for i, t in enumerate(tqdm.tqdm(scheduler.timesteps)):
57
- with torch.no_grad():
58
- residual = model(sample, t).sample
59
- sample = scheduler.step(residual, t, sample).prev_sample
60
- if (i + 1) % 10 == 0:
61
- display_sample(sample, i + 1)
 
11
  model_random = UNet2DModel(**model.config)
12
  model_random.save_pretrained("my_model")
13
  model_random = UNet2DModel.from_pretrained("my_model")