Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,13 +1,28 @@
|
|
|
|
1 |
from gradio_client import Client
|
2 |
import gradio as gr
|
3 |
|
4 |
-
|
|
|
5 |
client = Client("radames/Enhance-This-HiDiffusion-SDXL")
|
6 |
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
-
def my_interface(input_image, prompt="This is a beautiful scenery", negative_prompt="blurry, ugly, duplicate, poorly drawn, deformed, mosaic", seed=1415926535897932, guidance_scale=8.5, scale=2, controlnet_conditioning_scale=0.5, strength=1.0, controlnet_start=0.0, controlnet_end=1.0, guassian_sigma=2.0, intensity_threshold=3):
|
10 |
-
# Call the other space's predict function
|
11 |
result = client.predict(
|
12 |
input_image=input_image,
|
13 |
prompt=prompt,
|
@@ -23,13 +38,8 @@ def my_interface(input_image, prompt="This is a beautiful scenery", negative_pro
|
|
23 |
intensity_threshold=intensity_threshold,
|
24 |
api_name="/predict"
|
25 |
)
|
26 |
-
# Return only the first image from the result
|
27 |
-
return result[0][0]
|
28 |
|
29 |
-
|
30 |
-
iface = gr.Interface(fn=my_interface,
|
31 |
-
inputs=gr.Image(),
|
32 |
-
outputs=gr.Image())
|
33 |
|
34 |
-
|
35 |
-
|
|
|
1 |
+
from flask import Flask, request, jsonify
|
2 |
from gradio_client import Client
|
3 |
import gradio as gr
|
4 |
|
5 |
+
app = Flask(__name__)
|
6 |
+
|
7 |
client = Client("radames/Enhance-This-HiDiffusion-SDXL")
|
8 |
|
9 |
+
@app.route('/predict', methods=['POST'])
|
10 |
+
def my_interface():
|
11 |
+
data = request.get_json()
|
12 |
+
|
13 |
+
input_image = data['input_image']
|
14 |
+
prompt = data.get('prompt', "This is a beautiful scenery")
|
15 |
+
negative_prompt = data.get('negative_prompt', "blurry, ugly, duplicate, poorly drawn, deformed, mosaic")
|
16 |
+
seed = data.get('seed', 1415926535897932)
|
17 |
+
guidance_scale = data.get('guidance_scale', 8.5)
|
18 |
+
scale = data.get('scale', 2)
|
19 |
+
controlnet_conditioning_scale = data.get('controlnet_conditioning_scale', 0.5)
|
20 |
+
strength = data.get('strength', 1.0)
|
21 |
+
controlnet_start = data.get('controlnet_start', 0.0)
|
22 |
+
controlnet_end = data.get('controlnet_end', 1.0)
|
23 |
+
guassian_sigma = data.get('guassian_sigma', 2.0)
|
24 |
+
intensity_threshold = data.get('intensity_threshold', 3)
|
25 |
|
|
|
|
|
26 |
result = client.predict(
|
27 |
input_image=input_image,
|
28 |
prompt=prompt,
|
|
|
38 |
intensity_threshold=intensity_threshold,
|
39 |
api_name="/predict"
|
40 |
)
|
|
|
|
|
41 |
|
42 |
+
return jsonify(result[0][0])
|
|
|
|
|
|
|
43 |
|
44 |
+
if __name__ == '__main__':
|
45 |
+
app.run(debug=True)
|