AlGe commited on
Commit
460ed53
·
verified ·
1 Parent(s): c0bed6d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -2
app.py CHANGED
@@ -5,13 +5,15 @@ import gradio as gr
5
  client = Client("radames/Enhance-This-HiDiffusion-SDXL")
6
 
7
  # Define your interface function
8
- def my_interface(input_image, prompt, negative_prompt, seed, guidance_scale=8.5, scale=2, controlnet_conditioning_scale=0.5, strength=1.0, controlnet_start=0.0, controlnet_end=1.0, guassian_sigma=2.0, intensity_threshold=3):
9
  # Call the other space's predict function
10
  result = client.predict(input_image, prompt, negative_prompt, seed, guidance_scale, scale, controlnet_conditioning_scale, strength, controlnet_start, controlnet_end, guassian_sigma, intensity_threshold)
11
  return result
12
 
13
  # Define your Gradio interface
14
- iface = gr.Interface(fn=my_interface, inputs=..., outputs=...)
 
 
15
 
16
  # Launch your Gradio interface
17
  iface.launch()
 
5
  client = Client("radames/Enhance-This-HiDiffusion-SDXL")
6
 
7
  # Define your interface function
8
+ def my_interface(input_image, prompt="This is a beautiful scenery", negative_prompt="blurry, ugly, duplicate, poorly drawn, deformed, mosaic", seed=1415926535897932, guidance_scale=8.5, scale=2, controlnet_conditioning_scale=0.5, strength=1.0, controlnet_start=0.0, controlnet_end=1.0, guassian_sigma=2.0, intensity_threshold=3):
9
  # Call the other space's predict function
10
  result = client.predict(input_image, prompt, negative_prompt, seed, guidance_scale, scale, controlnet_conditioning_scale, strength, controlnet_start, controlnet_end, guassian_sigma, intensity_threshold)
11
  return result
12
 
13
  # Define your Gradio interface
14
+ iface = gr.Interface(fn=my_interface,
15
+ inputs=gr.inputs.Image(shape=(1024,1024), source="upload"),
16
+ outputs=gr.outputs.Image())
17
 
18
  # Launch your Gradio interface
19
  iface.launch()