AlGe commited on
Commit
35df457
·
verified ·
1 Parent(s): c1c9a0e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -3
app.py CHANGED
@@ -7,12 +7,13 @@ client = Client("radames/Enhance-This-HiDiffusion-SDXL")
7
  # Define your interface function
8
  def my_interface(input_image, prompt="This is a beautiful scenery", negative_prompt="blurry, ugly, duplicate, poorly drawn, deformed, mosaic", seed=1415926535897932, guidance_scale=8.5, scale=2, controlnet_conditioning_scale=0.5, strength=1.0, controlnet_start=0.0, controlnet_end=1.0, guassian_sigma=2.0, intensity_threshold=3):
9
  # Call the other space's predict function
10
- result = client.predict(input_image, prompt, negative_prompt, seed, guidance_scale, scale, controlnet_conditioning_scale, strength, controlnet_start, controlnet_end, guassian_sigma, intensity_threshold)
11
- return result
 
12
 
13
  # Define your Gradio interface
14
  iface = gr.Interface(fn=my_interface,
15
- inputs=gr.Image(),
16
  outputs=gr.Image())
17
 
18
  # Launch your Gradio interface
 
7
  # Define your interface function
8
  def my_interface(input_image, prompt="This is a beautiful scenery", negative_prompt="blurry, ugly, duplicate, poorly drawn, deformed, mosaic", seed=1415926535897932, guidance_scale=8.5, scale=2, controlnet_conditioning_scale=0.5, strength=1.0, controlnet_start=0.0, controlnet_end=1.0, guassian_sigma=2.0, intensity_threshold=3):
9
  # Call the other space's predict function
10
+ result = client.predict(input_image, prompt, negative_prompt, seed, guidance_scale, scale, controlnet_conditioning_scale, strength, controlnet_start, controlnet_end, guassian_sigma, intensity_threshold, api_name="predict")
11
+ # Return only the first image from the result
12
+ return result[0][0]
13
 
14
  # Define your Gradio interface
15
  iface = gr.Interface(fn=my_interface,
16
+ inputs=gr.Image(shape=(1024,1024), source="upload"),
17
  outputs=gr.Image())
18
 
19
  # Launch your Gradio interface