File size: 3,416 Bytes
53bf50a a0ade0a 2a3a970 a0ade0a 460a080 a0ade0a e8a0f17 53bf50a 2a3a970 036e563 bf036e1 e8a0f17 036e563 b1dcc65 036e563 b1dcc65 036e563 b1dcc65 bf6da96 6b0ab1a bf6da96 e9d9124 a0ade0a 8cb52d1 a0ade0a 8cb52d1 2a3a970 a0ade0a 2a3a970 6b0ab1a 2a3a970 a0ade0a 886193f 5e6d454 1b2076c d79b3e8 3a9b2f3 9352ec1 a0ade0a 9352ec1 a0ade0a 9352ec1 a0ade0a 9352ec1 5a5168a b1dcc65 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
from __future__ import annotations
from typing import Iterable, List, Dict, Tuple
import gradio as gr
from gradio.themes.base import Base
from gradio.themes.soft import Soft
from gradio.themes.monochrome import Monochrome
from gradio.themes.default import Default
from gradio.themes.utils import colors, fonts, sizes
import spaces
import torch
import os
import io
import colorsys
import numpy as np
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoModelForTokenClassification, pipeline
import matplotlib.pyplot as plt
import plotly.graph_objects as go
from wordcloud import WordCloud
def hex_to_rgb(hex_color: str) -> tuple[int, int, int]:
hex_color = hex_color.lstrip('#')
return tuple(int(hex_color[i:i+2], 16) for i in (0, 2, 4))
def rgb_to_hex(rgb_color: tuple[int, int, int]) -> str:
return "#{:02x}{:02x}{:02x}".format(*rgb_color)
def adjust_brightness(rgb_color: tuple[int, int, int], factor: float) -> tuple[int, int, int]:
hsv_color = colorsys.rgb_to_hsv(*[v / 255.0 for v in rgb_color])
new_v = max(0, min(hsv_color[2] * factor, 1))
new_rgb = colorsys.hsv_to_rgb(hsv_color[0], hsv_color[1], new_v)
return tuple(int(v * 255) for v in new_rgb)
monochrome = Monochrome()
auth_token = os.environ['HF_TOKEN']
model1 = AutoModelForSequenceClassification.from_pretrained("AlGe/deberta-v3-large_Int_segment", num_labels=1, token=auth_token)
tokenizer1 = AutoTokenizer.from_pretrained("AlGe/deberta-v3-large_Int_segment", token=auth_token)
model2 = AutoModelForSequenceClassification.from_pretrained("AlGe/deberta-v3-large_seq_ext", num_labels=1, token=auth_token)
def process_classification(text: str, model1, model2, tokenizer1) -> Tuple[str, str, str]:
inputs1 = tokenizer1(text, max_length=512, return_tensors='pt', truncation=True, padding=True)
with torch.no_grad():
outputs1 = model1(**inputs1)
outputs2 = model2(**inputs1)
prediction1 = outputs1[0].item()
prediction2 = outputs2[0].item()
score = prediction1 / (prediction2 + prediction1)
return f"{round(prediction1, 1)}", f"{round(prediction2, 1)}", f"{round(score, 2)}"
@spaces.GPU
def all(text: str):
classification_output = process_classification(text, model1, model2, tokenizer1)
return (classification_output[0], classification_output[1], classification_output[2])
examples = [
['Bevor ich meinen Hund kaufte bin ich immer alleine durch den Park gelaufen. Gestern war ich aber mit dem Hund losgelaufen. Das Wetter war sehr schön, nicht wie sonst im Winter. Ich weiß nicht genau. Mir fällt sonst nichts dazu ein. Wir trafen auf mehrere Spaziergänger. Ein Mann mit seinem Kind. Das Kind hat ein Eis gegessen.'],
]
iface = gr.Interface(
fn=all,
inputs=gr.Textbox(lines=5, label="Input Text", placeholder="Write about how your breakfast went or anything else that happened or might happen to you ..."),
outputs=[
gr.Label(label="Internal Detail Count"),
gr.Label(label="External Detail Count"),
gr.Label(label="Approximated Internal Detail Ratio"),
],
title="Scoring Demo",
description="Autobiographical Memory Analysis: This demo combines two text - and two sequence classification models to showcase our automated Autobiographical Interview scoring method. Submit a narrative to see the results.",
examples=examples,
theme=monochrome
)
iface.launch() |