Akjava commited on
Commit
249f47f
·
verified ·
1 Parent(s): f70078e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +65 -73
app.py CHANGED
@@ -4,84 +4,58 @@ import torch
4
  from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
5
  import gradio as gr
6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
 
8
- huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
9
- if not huggingface_token:
10
- pass
11
- print("no HUGGINGFACE_TOKEN if you need set secret ")
12
- #raise ValueError("HUGGINGFACE_TOKEN environment variable is not set")
13
-
14
- #model_id = "Qwen/Qwen1.5-0.5B-Chat"
15
- model_id = "Kendamarron/Tokara-0.5B-Chat-v0.1"
16
- model_id = "Qwen/Qwen2-0.5B-Instruct"
17
-
18
- device = "auto" # torch.device("cuda" if torch.cuda.is_available() else "cpu")
19
- dtype = torch.bfloat16
20
-
21
- tokenizer = AutoTokenizer.from_pretrained(model_id, token=huggingface_token)
22
-
23
- print(model_id,device,dtype)
24
- histories = []
25
- #model = None
26
-
27
-
28
- def call_generate_text(prompt, system_message="You are a helpful assistant."):
29
- if prompt =="":
30
- print("empty prompt return")
31
- return ""
32
-
33
- global histories
34
- #global model
35
- #if model != None:# and model.is_cuda:
36
- # print("Model is alive")
37
- #else:
38
- # model = AutoModelForCausalLM.from_pretrained(
39
- # model_id, token=huggingface_token ,torch_dtype=dtype,device_map=device
40
- #)
41
 
42
- messages = [
43
- {"role": "system", "content": system_message},
44
- ]
 
45
 
46
- messages += histories
47
-
48
- user_message = {"role": "user", "content": prompt}
49
-
50
- messages += [user_message]
51
 
52
- try:
53
- text = generate_text(messages)
54
- histories += [user_message,{"role": "assistant", "content": text}]
55
- #model.to("cpu")
56
- return text
57
- except RuntimeError as e:
58
- print(f"An unexpected error occurred: {e}")
59
- #model = None
60
-
61
- return ""
62
-
63
- iface = gr.Interface(
64
- fn=call_generate_text,
65
- inputs=[
66
- gr.Textbox(lines=3, label="Input Prompt"),
67
- gr.Textbox(lines=2, label="System Message", value="あなたは親切なアシスタントで常に日本語で返答します。"),
68
- ],
69
- outputs=gr.Textbox(label="Generated Text"),
70
- title=f"{model_id}",
71
- description=f"{model_id} CPU",
72
- )
73
- print("Initialized")
74
 
75
  @spaces.GPU(duration=120)
76
  def generate_text(messages):
77
-
78
- model = AutoModelForCausalLM.from_pretrained(
79
- model_id, token=huggingface_token ,torch_dtype=dtype,device_map=device
80
- )
81
-
82
-
83
- text_generator = pipeline("text-generation", model=model, tokenizer=tokenizer,torch_dtype=dtype,device_map=device) #pipeline has not to(device)
84
- result = text_generator(messages, max_new_tokens=256, do_sample=True, temperature=0.7,repetition_penalty=1.1,top_p=0.95,top_k=40)
85
 
86
  generated_output = result[0]["generated_text"]
87
  if isinstance(generated_output, list):
@@ -94,6 +68,24 @@ def generate_text(messages):
94
  else:
95
  return "Unexpected output format."
96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97
  if __name__ == "__main__":
98
- print("Main")
99
- iface.launch()
 
4
  from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
5
  import gradio as gr
6
 
7
+ text_generator = None
8
+ is_hugging_face = False
9
+ def init():
10
+ global text_generator
11
+ huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
12
+ if not huggingface_token:
13
+ pass
14
+ print("no HUGGINGFACE_TOKEN if you need set secret ")
15
+ #raise ValueError("HUGGINGFACE_TOKEN environment variable is not set")
16
+
17
+ model_id = "google/gemma-2-9b-it"
18
+ model_id = "Qwen/Qwen2-0.5B-Instruct"
19
+
20
+ device = "auto" # torch.device("cuda" if torch.cuda.is_available() else "cpu")
21
+ device = "cuda"
22
+ dtype = torch.bfloat16
23
+
24
+ tokenizer = AutoTokenizer.from_pretrained(model_id, token=huggingface_token)
25
+
26
+ print(model_id,device,dtype)
27
+ histories = []
28
+ #model = None
29
 
30
+
31
+
32
+ if not is_hugging_face:
33
+ model = AutoModelForCausalLM.from_pretrained(
34
+ model_id, token=huggingface_token ,torch_dtype=dtype,device_map=device
35
+ )
36
+ text_generator = pipeline("text-generation", model=model, tokenizer=tokenizer,torch_dtype=dtype,device_map=device ) #pipeline has not to(device)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37
 
38
+ if next(model.parameters()).is_cuda:
39
+ print("The model is on a GPU")
40
+ else:
41
+ print("The model is on a CPU")
42
 
43
+ #print(f"text_generator.device='{text_generator.device}")
44
+ if str(text_generator.device).strip() == 'cuda':
45
+ print("The pipeline is using a GPU")
46
+ else:
47
+ print("The pipeline is using a CPU")
48
 
49
+ print("initialized")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50
 
51
  @spaces.GPU(duration=120)
52
  def generate_text(messages):
53
+ if is_hugging_face:#need everytime initialize for ZeroGPU
54
+ model = AutoModelForCausalLM.from_pretrained(
55
+ model_id, token=huggingface_token ,torch_dtype=dtype,device_map=device
56
+ )
57
+ text_generator = pipeline("text-generation", model=model, tokenizer=tokenizer,torch_dtype=dtype,device_map=device ) #pipeline has not to(device)
58
+ result = text_generator(messages, max_new_tokens=256, do_sample=True, temperature=0.7)
 
 
59
 
60
  generated_output = result[0]["generated_text"]
61
  if isinstance(generated_output, list):
 
68
  else:
69
  return "Unexpected output format."
70
 
71
+
72
+
73
+ def call_generate_text(message, history):
74
+ # history.append({"role": "user", "content": message})
75
+ print(message)
76
+ print(history)
77
+
78
+ messages = history+[{"role":"user","content":message}]
79
+ try:
80
+ text = generate_text(messages)
81
+ return text
82
+ except RuntimeError as e:
83
+ print(f"An unexpected error occurred: {e}")
84
+
85
+ return ""
86
+
87
+ demo = gr.ChatInterface(call_generate_text,type="messages")
88
+
89
  if __name__ == "__main__":
90
+ init()
91
+ demo.launch(share=True)