Spaces:
Sleeping
Sleeping
import spaces | |
import os | |
import torch | |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline | |
import gradio as gr | |
text_generator = None | |
is_hugging_face = False | |
def init(): | |
global text_generator | |
huggingface_token = os.getenv("HUGGINGFACE_TOKEN") | |
if not huggingface_token: | |
pass | |
print("no HUGGINGFACE_TOKEN if you need set secret ") | |
#raise ValueError("HUGGINGFACE_TOKEN environment variable is not set") | |
model_id = "meta-llama/Meta-Llama-3.1-8B-Instruct" | |
model_id = "google/gemma-2b" | |
model_id = "Qwen/Qwen2.5-0.5B-Instruct" | |
device = "auto" # torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
#device = "cuda" | |
dtype = torch.bfloat16 | |
tokenizer = AutoTokenizer.from_pretrained(model_id, token=huggingface_token) | |
print(model_id,device,dtype) | |
histories = [] | |
#model = None | |
model = AutoModelForCausalLM.from_pretrained( | |
model_id, token=huggingface_token ,torch_dtype=dtype,device_map=device | |
) | |
text_generator = pipeline("text-generation", model=model, tokenizer=tokenizer,torch_dtype=dtype,device_map=device ) #pipeline has not to(device) | |
if not is_hugging_face: | |
if next(model.parameters()).is_cuda: | |
print("The model is on a GPU") | |
else: | |
print("The model is on a CPU") | |
#print(f"text_generator.device='{text_generator.device}") | |
if str(text_generator.device).strip() == 'cuda': | |
print("The pipeline is using a GPU") | |
else: | |
print("The pipeline is using a CPU") | |
print("initialized") | |
def generate_text(messages): | |
global text_generator | |
if is_hugging_face:#need everytime initialize for ZeroGPU | |
model = AutoModelForCausalLM.from_pretrained( | |
model_id, token=huggingface_token ,torch_dtype=dtype,device_map=device | |
) | |
text_generator = pipeline("text-generation", model=model, tokenizer=tokenizer,torch_dtype=dtype,device_map=device ) #pipeline has not to(device) | |
result = text_generator(messages, max_new_tokens=32, do_sample=True, temperature=0.7) | |
generated_output = result[0]["generated_text"] | |
if isinstance(generated_output, list): | |
for message in reversed(generated_output): | |
if message.get("role") == "assistant": | |
content= message.get("content", "No content found.") | |
return content | |
return "No assistant response found." | |
else: | |
return "Unexpected output format." | |
def call_generate_text(message, history): | |
if len(message) == 0: | |
message.append({"role": "system", "content": "you response around 10 words"}) | |
# history.append({"role": "user", "content": message}) | |
print(message) | |
print(history) | |
messages = history+[{"role":"user","content":message}] | |
try: | |
text = generate_text(messages) | |
messages += [{"role":"assistant","content":text}] | |
return "",messages | |
except RuntimeError as e: | |
print(f"An unexpected error occurred: {e}") | |
return "",history | |
head = ''' | |
<script src="https://cdn.jsdelivr.net/npm/onnxruntime-web/dist/ort.webgpu.min.js" ></script> | |
<script type="module"> | |
import { MatchaTTSRaw } from "https://akjava.github.io/Matcha-TTS-Japanese/js-esm/matcha_tts_raw.js"; | |
import { webWavPlay } from "https://akjava.github.io/Matcha-TTS-Japanese/js-esm/web_wav_play.js"; | |
import { arpa_to_ipa } from "https://akjava.github.io/Matcha-TTS-Japanese/js-esm/arpa_to_ipa.js"; | |
import { loadCmudict } from "https://akjava.github.io/Matcha-TTS-Japanese/js-esm/cmudict_loader.js"; | |
import { env,textToArpa} from "https://akjava.github.io/Matcha-TTS-Japanese/js-esm/text_to_arpa.js"; | |
env.allowLocalModels = true; | |
env.localModelPath = "https://akjava.github.io/Matcha-TTS-Japanese/models/"; | |
env.backends.onnx.logLevel = "fatal"; | |
let matcha_tts_raw; | |
let cmudict ={}; | |
let speaking = false; | |
async function main(text,speed=1.0,tempature=0.5,spk=0) { | |
console.log(text) | |
if (speaking){ | |
console.log("speaking return") | |
} | |
speaking = true | |
console.log("main called") | |
if(!matcha_tts_raw){ | |
matcha_tts_raw = new MatchaTTSRaw() | |
console.time("load model"); | |
await matcha_tts_raw.load_model('https://huggingface.co/spaces/Akjava/matcha-tts-onnx-benchmarks/resolve/main/models/matcha-tts/ljspeech_sim.onnx',{ executionProviders: ['webgpu','wasm'] }); | |
console.timeEnd("load model"); | |
let cmudictReady = loadCmudict(cmudict,'https://akjava.github.io/Matcha-TTS-Japanese/dictionaries/cmudict-0.7b') | |
await cmudictReady | |
}else{ | |
console.log("session exist skip load model") | |
} | |
const arpa_text = await textToArpa(cmudict,text) | |
const ipa_text = arpa_to_ipa(arpa_text).replace(/\s/g, ""); | |
console.log(ipa_text) | |
const spks = 0 | |
console.time("infer"); | |
const result = await matcha_tts_raw.infer(ipa_text, tempature, speed,spks); | |
if (result!=null){ | |
console.timeEnd("infer"); | |
webWavPlay(result) | |
} | |
speaking = false | |
} | |
window.MatchaTTSEn = main | |
console.log(MatchaTTSRaw) | |
</script> | |
''' | |
with gr.Blocks(title="LLM with TTS",head=head) as demo: | |
gr.Markdown("## Please be patient, the first response may have a delay of up to 20 seconds while loading.") | |
gr.Markdown("**Qwen2.5-0.5B-Instruct/LJSpeech**.LLM and TTS models will change without notice.") | |
js = """ | |
function(chatbot){ | |
text = (chatbot[chatbot.length -1])["content"] | |
window.MatchaTTSEn(text) | |
} | |
""" | |
chatbot = gr.Chatbot(type="messages") | |
chatbot.change(None,[chatbot],[],js=js) | |
msg = gr.Textbox() | |
clear = gr.ClearButton([msg, chatbot]) | |
#demo = gr.ChatInterface(call_generate_text,chatbot=chatbot,type="messages") | |
msg.submit(call_generate_text, [msg, chatbot], [msg, chatbot]) | |
if __name__ == "__main__": | |
init() | |
demo.launch(share=True) |