Spaces:
Build error
Build error
Upload 4 files
Browse files- app.py +565 -0
- embeddings_metadata.pkl +3 -0
- packages.txt +2 -0
- requirements.txt +9 -0
app.py
ADDED
@@ -0,0 +1,565 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pickle
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
import torch.nn.functional as F
|
6 |
+
from PIL import Image, UnidentifiedImageError
|
7 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
8 |
+
import os
|
9 |
+
from pdf2image import convert_from_path
|
10 |
+
from streamlit_cropper import st_cropper
|
11 |
+
import easyocr
|
12 |
+
from reportlab.lib.pagesizes import letter
|
13 |
+
from reportlab.pdfgen import canvas
|
14 |
+
from reportlab.lib.utils import ImageReader
|
15 |
+
import io
|
16 |
+
import base64
|
17 |
+
|
18 |
+
# -------------------
|
19 |
+
# Set page config (must be done before other elements)
|
20 |
+
# -------------------
|
21 |
+
st.set_page_config(
|
22 |
+
page_title="Mobica Find",
|
23 |
+
)
|
24 |
+
|
25 |
+
# Inject custom CSS to force a black background
|
26 |
+
st.markdown(
|
27 |
+
"""
|
28 |
+
<style>
|
29 |
+
.stApp {
|
30 |
+
background-color: black;
|
31 |
+
color: white; /* Ensures your text is visible on black background */
|
32 |
+
}
|
33 |
+
</style>
|
34 |
+
""",
|
35 |
+
unsafe_allow_html=True
|
36 |
+
)
|
37 |
+
|
38 |
+
# ---------------
|
39 |
+
# Inject top-left logo
|
40 |
+
# ---------------
|
41 |
+
logo_path = r"E:\Mobica\pdf_parser\logo_mobica.png"
|
42 |
+
with open(logo_path, "rb") as f:
|
43 |
+
logo_bytes = f.read()
|
44 |
+
encoded_logo = base64.b64encode(logo_bytes).decode()
|
45 |
+
|
46 |
+
st.markdown(
|
47 |
+
f"""
|
48 |
+
<style>
|
49 |
+
.top-left-logo {{
|
50 |
+
position: fixed;
|
51 |
+
top: 1rem;
|
52 |
+
left: 1rem;
|
53 |
+
z-index: 9999;
|
54 |
+
}}
|
55 |
+
</style>
|
56 |
+
<div class="top-left-logo">
|
57 |
+
<img src="data:image/png;base64,{encoded_logo}" width="240">
|
58 |
+
</div>
|
59 |
+
""",
|
60 |
+
unsafe_allow_html=True
|
61 |
+
)
|
62 |
+
|
63 |
+
# --------------------
|
64 |
+
# Load Processor, Model, and Metadata
|
65 |
+
# --------------------
|
66 |
+
@st.cache_resource()
|
67 |
+
def load_resources():
|
68 |
+
model_name = "kakaobrain/align-base"
|
69 |
+
|
70 |
+
# Load processor and model directly from Hugging Face
|
71 |
+
processor = AutoProcessor.from_pretrained(model_name)
|
72 |
+
model = AlignModel.from_pretrained(model_name)
|
73 |
+
|
74 |
+
# Move model to GPU if available
|
75 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
76 |
+
model.to(device)
|
77 |
+
|
78 |
+
return processor, model
|
79 |
+
|
80 |
+
processor, model = load_resources()
|
81 |
+
|
82 |
+
|
83 |
+
def extract_text_with_easyocr(image, language="en"):
|
84 |
+
""" Extracts text from an image using EasyOCR. """
|
85 |
+
try:
|
86 |
+
results = reader.readtext(np.array(image), detail=0) # Get only text results
|
87 |
+
return " ".join(results) if results else ""
|
88 |
+
except Exception as e:
|
89 |
+
st.error(f"Error during OCR: {e}")
|
90 |
+
return ""
|
91 |
+
|
92 |
+
# --------------------
|
93 |
+
# Embedding Functions
|
94 |
+
# --------------------
|
95 |
+
def get_image_embedding(image):
|
96 |
+
"""Return normalized image embedding."""
|
97 |
+
image_inputs = processor(images=image, return_tensors="pt")
|
98 |
+
image_outputs = model.get_image_features(**image_inputs)
|
99 |
+
return F.normalize(image_outputs, dim=1).detach().cpu().numpy()
|
100 |
+
|
101 |
+
def get_text_embedding(text):
|
102 |
+
"""Return normalized text embedding."""
|
103 |
+
text_inputs = processor(text=[text], return_tensors="pt", padding=True, truncation=True)
|
104 |
+
text_outputs = model.get_text_features(**text_inputs)
|
105 |
+
return F.normalize(text_outputs, dim=1).detach().cpu().numpy()
|
106 |
+
|
107 |
+
# --------------------
|
108 |
+
# Search Function
|
109 |
+
# --------------------
|
110 |
+
def find_most_similar_products(
|
111 |
+
image=None,
|
112 |
+
description=None,
|
113 |
+
n=3,
|
114 |
+
combine_method="none" # "none" (image-only), "text-only", or "average" for combining
|
115 |
+
):
|
116 |
+
"""
|
117 |
+
Returns the top-n most similar products based on the specified method:
|
118 |
+
- image-only
|
119 |
+
- description-only
|
120 |
+
- both (average of embeddings)
|
121 |
+
"""
|
122 |
+
# Prepare the query embedding
|
123 |
+
if combine_method == "none" and image is not None:
|
124 |
+
query_embed = get_image_embedding(image) # image-only
|
125 |
+
elif combine_method == "text-only" and description is not None:
|
126 |
+
query_embed = get_text_embedding(description) # text-only
|
127 |
+
else:
|
128 |
+
# "average" => must have both image & description
|
129 |
+
img_emb = get_image_embedding(image)
|
130 |
+
txt_emb = get_text_embedding(description)
|
131 |
+
query_embed = (img_emb + txt_emb) / 2.0 # simple average
|
132 |
+
|
133 |
+
similarities = []
|
134 |
+
|
135 |
+
# Loop through each product in metadata and compute similarity
|
136 |
+
for entry in embeddings_metadata.values():
|
137 |
+
image_similarities = []
|
138 |
+
for emb_path in entry.get("image_embedding_paths", []):
|
139 |
+
emb_path = os.path.normpath(emb_path)
|
140 |
+
if os.path.exists(emb_path):
|
141 |
+
stored_embedding = np.load(emb_path)
|
142 |
+
# Cosine similarity
|
143 |
+
image_similarities.append(cosine_similarity(query_embed, stored_embedding).mean())
|
144 |
+
|
145 |
+
# Average all image sims in the product
|
146 |
+
overall_score = np.mean(image_similarities) if image_similarities else 0
|
147 |
+
|
148 |
+
if overall_score > 0:
|
149 |
+
similarities.append((overall_score, entry))
|
150 |
+
|
151 |
+
# Sort descending by similarity
|
152 |
+
return sorted(similarities, key=lambda x: x[0], reverse=True)[:n]
|
153 |
+
|
154 |
+
# --------------------
|
155 |
+
# Session State Setup
|
156 |
+
# --------------------
|
157 |
+
if "pdf_crops" not in st.session_state:
|
158 |
+
# We'll store pairs (snippet_image, product_image) for each page
|
159 |
+
st.session_state["pdf_crops"] = []
|
160 |
+
|
161 |
+
if "results" not in st.session_state:
|
162 |
+
st.session_state["results"] = []
|
163 |
+
|
164 |
+
# --------------------
|
165 |
+
# APP UI
|
166 |
+
# --------------------
|
167 |
+
st.title("Mobica Find")
|
168 |
+
|
169 |
+
search_method = st.selectbox(
|
170 |
+
"Choose Search Method",
|
171 |
+
["Upload PDF", "Image Only", "Description Only", "Both (Image + Description)"]
|
172 |
+
)
|
173 |
+
|
174 |
+
# -----------------------------------------------------------------------------
|
175 |
+
# 1) PDF METHOD
|
176 |
+
# -----------------------------------------------------------------------------
|
177 |
+
# -----------------------------------------------------------------------------
|
178 |
+
# 1) PDF METHOD
|
179 |
+
# -----------------------------------------------------------------------------
|
180 |
+
|
181 |
+
|
182 |
+
# Initialize EasyOCR reader (Supports multiple languages)
|
183 |
+
reader = easyocr.Reader(["en", "ar"]) # Add languages as needed
|
184 |
+
|
185 |
+
# -------------------
|
186 |
+
# Set page config (must be done before other elements)
|
187 |
+
# -------------------
|
188 |
+
st.set_page_config(
|
189 |
+
page_title="Mobica Find",
|
190 |
+
)
|
191 |
+
|
192 |
+
# Inject custom CSS to force a black background
|
193 |
+
st.markdown(
|
194 |
+
"""
|
195 |
+
<style>
|
196 |
+
.stApp {
|
197 |
+
background-color: black;
|
198 |
+
color: white; /* Ensures your text is visible on black background */
|
199 |
+
}
|
200 |
+
</style>
|
201 |
+
""",
|
202 |
+
unsafe_allow_html=True
|
203 |
+
)
|
204 |
+
|
205 |
+
# ---------------
|
206 |
+
# Inject top-left logo
|
207 |
+
# ---------------
|
208 |
+
logo_path = r"E:\Mobica\pdf_parser\logo_mobica.png"
|
209 |
+
with open(logo_path, "rb") as f:
|
210 |
+
logo_bytes = f.read()
|
211 |
+
encoded_logo = base64.b64encode(logo_bytes).decode()
|
212 |
+
|
213 |
+
st.markdown(
|
214 |
+
f"""
|
215 |
+
<style>
|
216 |
+
.top-left-logo {{
|
217 |
+
position: fixed;
|
218 |
+
top: 1rem;
|
219 |
+
left: 1rem;
|
220 |
+
z-index: 9999;
|
221 |
+
}}
|
222 |
+
</style>
|
223 |
+
<div class="top-left-logo">
|
224 |
+
<img src="data:image/png;base64,{encoded_logo}" width="240">
|
225 |
+
</div>
|
226 |
+
""",
|
227 |
+
unsafe_allow_html=True
|
228 |
+
)
|
229 |
+
|
230 |
+
# --------------------
|
231 |
+
# Load Processor, Model, and Metadata
|
232 |
+
# --------------------
|
233 |
+
@st.cache_resource()
|
234 |
+
def load_resources():
|
235 |
+
with open(r"E:\Mobica\pdf_parser\Data Sheet\align_processor.pkl", "rb") as f:
|
236 |
+
processor = pickle.load(f)
|
237 |
+
with open(r"E:\Mobica\pdf_parser\Data Sheet\align_model.pkl", "rb") as f:
|
238 |
+
model = pickle.load(f)
|
239 |
+
with open(r"E:\Mobica\pdf_parser\Data Sheet\embeddings_metadata.pkl", "rb") as f:
|
240 |
+
embeddings_metadata = pickle.load(f)
|
241 |
+
return processor, model, embeddings_metadata
|
242 |
+
|
243 |
+
processor, model, embeddings_metadata = load_resources()
|
244 |
+
|
245 |
+
# --------------------
|
246 |
+
# OCR Function using EasyOCR
|
247 |
+
# --------------------
|
248 |
+
def extract_text_with_easyocr(image, language="en"):
|
249 |
+
""" Extracts text from an image using EasyOCR. """
|
250 |
+
try:
|
251 |
+
results = reader.readtext(np.array(image), detail=0) # Get only text results
|
252 |
+
return " ".join(results) if results else ""
|
253 |
+
except Exception as e:
|
254 |
+
st.error(f"Error during OCR: {e}")
|
255 |
+
return ""
|
256 |
+
|
257 |
+
# --------------------
|
258 |
+
# APP UI
|
259 |
+
# --------------------
|
260 |
+
st.title("Mobica Find")
|
261 |
+
|
262 |
+
search_method = st.selectbox(
|
263 |
+
"Choose Search Method",
|
264 |
+
["Upload PDF", "Image Only", "Description Only", "Both (Image + Description)"]
|
265 |
+
)
|
266 |
+
|
267 |
+
# -----------------------------------------------------------------------------
|
268 |
+
# PDF Processing Section
|
269 |
+
# -----------------------------------------------------------------------------
|
270 |
+
if search_method == "Upload PDF":
|
271 |
+
st.subheader("Upload a PDF")
|
272 |
+
uploaded_pdf = st.file_uploader("Upload a PDF", type=["pdf"])
|
273 |
+
|
274 |
+
if uploaded_pdf:
|
275 |
+
pdf_path = f"temp_{uploaded_pdf.name}"
|
276 |
+
with open(pdf_path, "wb") as f:
|
277 |
+
f.write(uploaded_pdf.getbuffer())
|
278 |
+
|
279 |
+
st.write("Extracting pages from PDF...")
|
280 |
+
pages = convert_from_path(pdf_path, 300)
|
281 |
+
|
282 |
+
if pages:
|
283 |
+
page_num = st.number_input("Select Page Number", min_value=1, max_value=len(pages), value=1) - 1
|
284 |
+
page_image = pages[page_num]
|
285 |
+
|
286 |
+
# -------------------- Crop Snippet for OCR (description) --------------------
|
287 |
+
st.subheader("Crop Snippet from PDF for OCR")
|
288 |
+
cropped_img_pdf_snippet = st_cropper(page_image, realtime_update=True, box_color='#FF0000')
|
289 |
+
|
290 |
+
description_ocr = ""
|
291 |
+
if cropped_img_pdf_snippet:
|
292 |
+
cropped_img_pdf_snippet = cropped_img_pdf_snippet.convert("RGB")
|
293 |
+
st.image(cropped_img_pdf_snippet, caption="Cropped PDF Snippet (For OCR)")
|
294 |
+
|
295 |
+
# Use EasyOCR instead of Tesseract
|
296 |
+
selected_lang = st.selectbox("Select OCR Language", ["en", "ar", "en+ar"], index=0)
|
297 |
+
description_ocr = extract_text_with_easyocr(cropped_img_pdf_snippet, language=selected_lang)
|
298 |
+
|
299 |
+
if description_ocr:
|
300 |
+
st.success("OCR text extracted successfully!")
|
301 |
+
st.write("**Detected Text**:", description_ocr)
|
302 |
+
else:
|
303 |
+
st.warning("No text detected.")
|
304 |
+
|
305 |
+
# -------------------- Crop for product image --------------------
|
306 |
+
st.subheader("Crop the Product Image")
|
307 |
+
furniture_cropped_img = st_cropper(page_image, realtime_update=True, box_color='#00FF00')
|
308 |
+
|
309 |
+
if furniture_cropped_img:
|
310 |
+
furniture_cropped_img = furniture_cropped_img.convert("RGB")
|
311 |
+
st.image(furniture_cropped_img, caption="Cropped Product Image")
|
312 |
+
|
313 |
+
# -------------------- "Done" Button to save both crops --------------------
|
314 |
+
if st.button("Done"):
|
315 |
+
st.session_state.setdefault("pdf_crops", []).append(
|
316 |
+
(cropped_img_pdf_snippet, furniture_cropped_img)
|
317 |
+
)
|
318 |
+
st.success(f"Crop #{len(st.session_state['pdf_crops'])} saved!")
|
319 |
+
|
320 |
+
# -------------------- Show saved crops if any --------------------
|
321 |
+
if "pdf_crops" in st.session_state and len(st.session_state["pdf_crops"]) > 0:
|
322 |
+
st.subheader("📊 View Saved Crops")
|
323 |
+
|
324 |
+
crop_index = st.slider("Select Crop", 1, len(st.session_state["pdf_crops"]), 1) - 1
|
325 |
+
snippet_img, product_img = st.session_state["pdf_crops"][crop_index]
|
326 |
+
|
327 |
+
col1, col2 = st.columns(2)
|
328 |
+
with col1:
|
329 |
+
if snippet_img:
|
330 |
+
st.image(snippet_img, caption=f"Snippet Crop {crop_index+1}", use_column_width=True)
|
331 |
+
with col2:
|
332 |
+
if product_img:
|
333 |
+
st.image(product_img, caption=f"Product Crop {crop_index+1}", use_column_width=True)
|
334 |
+
|
335 |
+
if st.button(f"Delete Crop {crop_index+1}"):
|
336 |
+
st.session_state["pdf_crops"].pop(crop_index)
|
337 |
+
st.success(f"Crop {crop_index+1} deleted!")
|
338 |
+
st.experimental_rerun()
|
339 |
+
|
340 |
+
|
341 |
+
# -------------------- Let user choose how many similar products --------------------
|
342 |
+
n_similar = st.slider("How many similar products do you want?", 1, 10, 3)
|
343 |
+
|
344 |
+
# -------------------- "Find Similar Products" button --------------------
|
345 |
+
if st.button("Find Similar Products"):
|
346 |
+
st.session_state["results"] = []
|
347 |
+
# We'll do an image-based search using the product crop only
|
348 |
+
for snippet_img, product_img in st.session_state["pdf_crops"]:
|
349 |
+
if product_img is not None:
|
350 |
+
results_for_img = find_most_similar_products(
|
351 |
+
image=product_img,
|
352 |
+
n=n_similar,
|
353 |
+
combine_method="none" # image-only
|
354 |
+
)
|
355 |
+
st.session_state["results"].append(results_for_img)
|
356 |
+
|
357 |
+
st.success("Results generated!")
|
358 |
+
|
359 |
+
# -------------- Display results in the Streamlit GUI --------------
|
360 |
+
for i, results_for_img in enumerate(st.session_state["results"]):
|
361 |
+
st.write(f"**Results for Crop {i+1}**:")
|
362 |
+
if results_for_img:
|
363 |
+
for sim_score, matched_entry in results_for_img:
|
364 |
+
# Extract product code from the original image path
|
365 |
+
if "original_image_paths" in matched_entry and matched_entry["original_image_paths"]:
|
366 |
+
matched_img_path = os.path.normpath(matched_entry["original_image_paths"][0])
|
367 |
+
product_code = os.path.basename(matched_img_path).split('_')[0] # Extract product code
|
368 |
+
|
369 |
+
st.subheader(f"🔹 Match (Similarity: {sim_score:.4f})")
|
370 |
+
st.write(f"**Product Code:** {product_code}") # Display product code
|
371 |
+
st.write(f"**Description:** {matched_entry.get('description', 'No description')}")
|
372 |
+
|
373 |
+
# Show the first matched image (if available)
|
374 |
+
if os.path.exists(matched_img_path):
|
375 |
+
try:
|
376 |
+
img_matched = Image.open(matched_img_path).convert("RGB")
|
377 |
+
st.image(
|
378 |
+
img_matched,
|
379 |
+
caption=f"Matched Image (Sim: {sim_score:.4f})",
|
380 |
+
use_column_width=True
|
381 |
+
)
|
382 |
+
except UnidentifiedImageError:
|
383 |
+
st.warning(f"⚠️ Cannot open image: {matched_img_path}. It might be corrupted.")
|
384 |
+
else:
|
385 |
+
st.warning(f"⚠️ Image file not found: {matched_img_path}")
|
386 |
+
else:
|
387 |
+
st.warning(f"No similar products found for Crop {i+1}.")
|
388 |
+
|
389 |
+
# -------------------- Generate PDF if results are available --------------------
|
390 |
+
if len(st.session_state["results"]) > 0:
|
391 |
+
pdf_buffer = io.BytesIO()
|
392 |
+
pdf = canvas.Canvas(pdf_buffer, pagesize=letter)
|
393 |
+
|
394 |
+
# st.session_state["results"] is a list of lists
|
395 |
+
# st.session_state["pdf_crops"] is a list of (snippet_img, product_img)
|
396 |
+
for i, (snippet_img, product_img) in enumerate(st.session_state["pdf_crops"]):
|
397 |
+
pdf.drawString(100, 750, f"Crop {i+1}")
|
398 |
+
|
399 |
+
# Add cropped product image to PDF
|
400 |
+
if product_img:
|
401 |
+
img_byte_arr = io.BytesIO()
|
402 |
+
product_img.save(img_byte_arr, format='JPEG')
|
403 |
+
img_byte_arr.seek(0)
|
404 |
+
pdf.drawImage(ImageReader(img_byte_arr), 100, 550, width=200, height=150)
|
405 |
+
|
406 |
+
y_pos = 530
|
407 |
+
# Go through the matched results for this product
|
408 |
+
if i < len(st.session_state["results"]):
|
409 |
+
for sim_score, matched_entry in st.session_state["results"][i]:
|
410 |
+
if "original_image_paths" in matched_entry and len(matched_entry["original_image_paths"]) > 0:
|
411 |
+
matched_img_path = os.path.normpath(matched_entry["original_image_paths"][0])
|
412 |
+
product_code = os.path.basename(matched_img_path).split('_')[0] # Extract product code
|
413 |
+
pdf.drawString(100, y_pos, f"Product Code: {product_code}") # Add product code to PDF
|
414 |
+
#pdf.drawString(100, y_pos - 20, f"Similarity: {sim_score:.4f}")
|
415 |
+
y_pos -= 40
|
416 |
+
if os.path.exists(matched_img_path):
|
417 |
+
pdf.drawImage(matched_img_path, 350, y_pos - 50, width=150, height=100)
|
418 |
+
y_pos -= 120
|
419 |
+
|
420 |
+
pdf.showPage()
|
421 |
+
|
422 |
+
pdf.save()
|
423 |
+
pdf_buffer.seek(0)
|
424 |
+
|
425 |
+
st.download_button(
|
426 |
+
"📥 Download Results PDF",
|
427 |
+
pdf_buffer,
|
428 |
+
f"{uploaded_pdf.name}_results.pdf",
|
429 |
+
"application/pdf"
|
430 |
+
)
|
431 |
+
|
432 |
+
# -----------------------------------------------------------------------------
|
433 |
+
# 2) IMAGE ONLY
|
434 |
+
# -----------------------------------------------------------------------------
|
435 |
+
elif search_method == "Image Only":
|
436 |
+
st.subheader("Upload an Image")
|
437 |
+
uploaded_image = st.file_uploader("Select an Image", type=["png", "jpg", "jpeg"])
|
438 |
+
|
439 |
+
if uploaded_image is not None:
|
440 |
+
image_obj = Image.open(uploaded_image).convert("RGB")
|
441 |
+
st.image(image_obj, use_column_width=True)
|
442 |
+
|
443 |
+
# Let user choose how many similar products
|
444 |
+
n_similar = st.slider("How many similar products do you want?", 1, 10, 3)
|
445 |
+
|
446 |
+
# Button to trigger the search
|
447 |
+
if st.button("Find Similar Products"):
|
448 |
+
results = find_most_similar_products(
|
449 |
+
image=image_obj,
|
450 |
+
n=n_similar,
|
451 |
+
combine_method="none" # image-only
|
452 |
+
)
|
453 |
+
|
454 |
+
if results:
|
455 |
+
for sim_score, matched_entry in results:
|
456 |
+
st.subheader(f"🔹 Match (Similarity: {sim_score:.4f})")
|
457 |
+
st.write(f"**Description:** {matched_entry.get('description','No description')}")
|
458 |
+
|
459 |
+
# Display the first image of the matched entry
|
460 |
+
if "original_image_paths" in matched_entry and matched_entry["original_image_paths"]:
|
461 |
+
img_path = os.path.normpath(matched_entry["original_image_paths"][0]) # Normalize path
|
462 |
+
if os.path.exists(img_path):
|
463 |
+
try:
|
464 |
+
img_matched = Image.open(img_path).convert("RGB")
|
465 |
+
st.image(
|
466 |
+
img_matched,
|
467 |
+
caption=f"Matched Image (Sim: {sim_score:.4f})",
|
468 |
+
use_column_width=True
|
469 |
+
)
|
470 |
+
except UnidentifiedImageError:
|
471 |
+
st.warning(f"⚠️ Cannot open image: {img_path}. It might be corrupted.")
|
472 |
+
else:
|
473 |
+
st.warning(f"⚠️ Image file not found: {img_path}")
|
474 |
+
else:
|
475 |
+
st.warning("No similar products found.")
|
476 |
+
|
477 |
+
# -----------------------------------------------------------------------------
|
478 |
+
# 3) DESCRIPTION ONLY
|
479 |
+
# -----------------------------------------------------------------------------
|
480 |
+
elif search_method == "Description Only":
|
481 |
+
st.subheader("Enter a Description")
|
482 |
+
user_description = st.text_area("Type or paste your description here")
|
483 |
+
|
484 |
+
if user_description.strip():
|
485 |
+
# Let user choose how many similar products
|
486 |
+
n_similar = st.slider("How many similar products do you want?", 1, 10, 3)
|
487 |
+
|
488 |
+
# Button to trigger the search
|
489 |
+
if st.button("Find Similar Products"):
|
490 |
+
results = find_most_similar_products(
|
491 |
+
description=user_description,
|
492 |
+
n=n_similar,
|
493 |
+
combine_method="text-only"
|
494 |
+
)
|
495 |
+
|
496 |
+
if results:
|
497 |
+
for sim_score, matched_entry in results:
|
498 |
+
st.subheader(f"🔹 Match (Similarity: {sim_score:.4f})")
|
499 |
+
st.write(f"**Description:** {matched_entry.get('description','No description')}")
|
500 |
+
|
501 |
+
# Display the first image of the matched entry
|
502 |
+
if "original_image_paths" in matched_entry and matched_entry["original_image_paths"]:
|
503 |
+
img_path = os.path.normpath(matched_entry["original_image_paths"][0])
|
504 |
+
if os.path.exists(img_path):
|
505 |
+
try:
|
506 |
+
img_matched = Image.open(img_path).convert("RGB")
|
507 |
+
st.image(
|
508 |
+
img_matched,
|
509 |
+
caption=f"Matched Image (Sim: {sim_score:.4f})",
|
510 |
+
use_column_width=True
|
511 |
+
)
|
512 |
+
except UnidentifiedImageError:
|
513 |
+
st.warning(f"⚠️ Cannot open image: {img_path}. It might be corrupted.")
|
514 |
+
else:
|
515 |
+
st.warning(f"⚠️ Image file not found: {img_path}")
|
516 |
+
else:
|
517 |
+
st.warning("No similar products found.")
|
518 |
+
|
519 |
+
# -----------------------------------------------------------------------------
|
520 |
+
# 4) BOTH (IMAGE + DESCRIPTION)
|
521 |
+
# -----------------------------------------------------------------------------
|
522 |
+
elif search_method == "Both (Image + Description)":
|
523 |
+
st.subheader("Upload an Image and Enter a Description")
|
524 |
+
uploaded_image = st.file_uploader("Select an Image", type=["png", "jpg", "jpeg"])
|
525 |
+
user_description = st.text_area("Type or paste your description here")
|
526 |
+
|
527 |
+
if uploaded_image is not None:
|
528 |
+
image_obj = Image.open(uploaded_image).convert("RGB")
|
529 |
+
st.image(image_obj, use_column_width=True)
|
530 |
+
|
531 |
+
if user_description.strip():
|
532 |
+
# Let user choose how many similar products
|
533 |
+
n_similar = st.slider("How many similar products do you want?", 1, 10, 3)
|
534 |
+
|
535 |
+
# Button to trigger the search
|
536 |
+
if st.button("Find Similar Products"):
|
537 |
+
results = find_most_similar_products(
|
538 |
+
image=image_obj,
|
539 |
+
description=user_description,
|
540 |
+
n=n_similar,
|
541 |
+
combine_method="average"
|
542 |
+
)
|
543 |
+
|
544 |
+
if results:
|
545 |
+
for sim_score, matched_entry in results:
|
546 |
+
st.subheader(f"🔹 Match (Similarity: {sim_score:.4f})")
|
547 |
+
st.write(f"**Description:** {matched_entry.get('description','No description')}")
|
548 |
+
|
549 |
+
# Display the first image of the matched entry
|
550 |
+
if "original_image_paths" in matched_entry and matched_entry["original_image_paths"]:
|
551 |
+
img_path = os.path.normpath(matched_entry["original_image_paths"][0])
|
552 |
+
if os.path.exists(img_path):
|
553 |
+
try:
|
554 |
+
img_matched = Image.open(img_path).convert("RGB")
|
555 |
+
st.image(
|
556 |
+
img_matched,
|
557 |
+
caption=f"Matched Image (Sim: {sim_score:.4f})",
|
558 |
+
use_column_width=True
|
559 |
+
)
|
560 |
+
except UnidentifiedImageError:
|
561 |
+
st.warning(f"⚠️ Cannot open image: {img_path}. It might be corrupted.")
|
562 |
+
else:
|
563 |
+
st.warning(f"⚠️ Image file not found: {img_path}")
|
564 |
+
else:
|
565 |
+
st.warning("No similar products found.")
|
embeddings_metadata.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:25f96cefa7b214660cef0e4ee06c3685141b17dd920944d7f8d724e65761d54a
|
3 |
+
size 209465
|
packages.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
poppler-utils
|
2 |
+
tesseract-ocr
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit==1.31.1
|
2 |
+
numpy==1.26.4
|
3 |
+
torch==2.6.0+cpu
|
4 |
+
PIL==10.2.0
|
5 |
+
sklearn==1.4.0
|
6 |
+
pdf2image==1.17.0
|
7 |
+
streamlit_cropper==0.2.1
|
8 |
+
pytesseract==0.3.10
|
9 |
+
reportlab==4.3.1
|