Update app.py
Browse files
app.py
CHANGED
@@ -16,8 +16,29 @@ def extract_text_from_pptx(file_path):
|
|
16 |
return "\n".join(text)
|
17 |
|
18 |
def predict_pptx_content(file_path):
|
19 |
-
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
classifier = pipeline("text-classification", model="Ahmed235/roberta_classification")
|
23 |
#summarizer = pipeline("summarization", model="Falconsai/text_summarization")
|
|
|
16 |
return "\n".join(text)
|
17 |
|
18 |
def predict_pptx_content(file_path):
|
19 |
+
print(f"File path received: {file_path}")
|
20 |
+
try:
|
21 |
+
extracted_text = extract_text_from_pptx(file_path)
|
22 |
+
cleaned_text = re.sub(r'\s+', ' ', extracted_text)
|
23 |
+
|
24 |
+
classifier = pipeline("text-classification", model="Ahmed235/roberta_classification")
|
25 |
+
#summarizer = pipeline("summarization", model="Falconsai/text_summarization")
|
26 |
+
|
27 |
+
result = classifier(cleaned_text)[0]
|
28 |
+
predicted_label = result['label']
|
29 |
+
predicted_probability = result['score']
|
30 |
+
|
31 |
+
prediction = {
|
32 |
+
"Predicted Label": predicted_label,
|
33 |
+
"Evaluation": f"Evaluate the topic according to {predicted_label} is: {predicted_probability}"
|
34 |
+
#"Summary": summarizer(cleaned_text, max_length=80, min_length=30, do_sample=False)
|
35 |
+
}
|
36 |
+
|
37 |
+
return prediction
|
38 |
+
except Exception as e:
|
39 |
+
print(f"Error processing file: {e}")
|
40 |
+
return {"error": str(e)}
|
41 |
+
|
42 |
|
43 |
classifier = pipeline("text-classification", model="Ahmed235/roberta_classification")
|
44 |
#summarizer = pipeline("summarization", model="Falconsai/text_summarization")
|