File size: 5,675 Bytes
5fa1a76 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments, BertConfig args = PyTorchBenchmarkArguments( models=["bert-base", "bert-384-hid", "bert-6-lay"], batch_sizes=[8], sequence_lengths=[8, 32, 128, 512] ) config_base = BertConfig() config_384_hid = BertConfig(hidden_size=384) config_6_lay = BertConfig(num_hidden_layers=6) benchmark = PyTorchBenchmark(args, configs=[config_base, config_384_hid, config_6_lay]) benchmark.run() ==================== INFERENCE - SPEED - RESULT ==================== Model Name Batch Size Seq Length Time in s bert-base 8 128 0.006 bert-base 8 512 0.006 bert-base 8 128 0.018 bert-base 8 512 0.088 bert-384-hid 8 8 0.006 bert-384-hid 8 32 0.006 bert-384-hid 8 128 0.011 bert-384-hid 8 512 0.054 bert-6-lay 8 8 0.003 bert-6-lay 8 32 0.004 bert-6-lay 8 128 0.009 bert-6-lay 8 512 0.044 ==================== INFERENCE - MEMORY - RESULT ==================== Model Name Batch Size Seq Length Memory in MB bert-base 8 8 1277 bert-base 8 32 1281 bert-base 8 128 1307 bert-base 8 512 1539 bert-384-hid 8 8 1005 bert-384-hid 8 32 1027 bert-384-hid 8 128 1035 bert-384-hid 8 512 1255 bert-6-lay 8 8 1097 bert-6-lay 8 32 1101 bert-6-lay 8 128 1127 bert-6-lay 8 512 1359 ==================== ENVIRONMENT INFORMATION ==================== transformers_version: 2.11.0 framework: PyTorch use_torchscript: False framework_version: 1.4.0 python_version: 3.6.10 system: Linux cpu: x86_64 architecture: 64bit date: 2020-06-29 time: 09:35:25.143267 fp16: False use_multiprocessing: True only_pretrain_model: False cpu_ram_mb: 32088 use_gpu: True num_gpus: 1 gpu: TITAN RTX gpu_ram_mb: 24217 gpu_power_watts: 280.0 gpu_performance_state: 2 use_tpu: False </pt> <tf>py from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments, BertConfig args = TensorFlowBenchmarkArguments( models=["bert-base", "bert-384-hid", "bert-6-lay"], batch_sizes=[8], sequence_lengths=[8, 32, 128, 512] ) config_base = BertConfig() config_384_hid = BertConfig(hidden_size=384) config_6_lay = BertConfig(num_hidden_layers=6) benchmark = TensorFlowBenchmark(args, configs=[config_base, config_384_hid, config_6_lay]) benchmark.run() ==================== INFERENCE - SPEED - RESULT ==================== Model Name Batch Size Seq Length Time in s bert-base 8 8 0.005 bert-base 8 32 0.008 bert-base 8 128 0.022 bert-base 8 512 0.106 bert-384-hid 8 8 0.005 bert-384-hid 8 32 0.007 bert-384-hid 8 128 0.018 bert-384-hid 8 512 0.064 bert-6-lay 8 8 0.002 bert-6-lay 8 32 0.003 bert-6-lay 8 128 0.0011 bert-6-lay 8 512 0.074 ==================== INFERENCE - MEMORY - RESULT ==================== Model Name Batch Size Seq Length Memory in MB bert-base 8 8 1330 bert-base 8 32 1330 bert-base 8 128 1330 bert-base 8 512 1770 bert-384-hid 8 8 1330 bert-384-hid 8 32 1330 bert-384-hid 8 128 1330 bert-384-hid 8 512 1540 bert-6-lay 8 8 1330 bert-6-lay 8 32 1330 bert-6-lay 8 128 1330 bert-6-lay 8 512 1540 ==================== ENVIRONMENT INFORMATION ==================== transformers_version: 2.11.0 framework: Tensorflow use_xla: False framework_version: 2.2.0 python_version: 3.6.10 system: Linux cpu: x86_64 architecture: 64bit date: 2020-06-29 time: 09:38:15.487125 fp16: False use_multiprocessing: True only_pretrain_model: False cpu_ram_mb: 32088 use_gpu: True num_gpus: 1 gpu: TITAN RTX gpu_ram_mb: 24217 gpu_power_watts: 280.0 gpu_performance_state: 2 use_tpu: False Again, inference time and required memory for inference are measured, but this time for customized configurations of the BertModel class. |