File size: 5,026 Bytes
2c1b143
fac55ce
c5f736c
 
2c1b143
fac55ce
2c1b143
c5f736c
 
 
1336ceb
 
c5f736c
1336ceb
 
 
 
 
 
 
 
 
c5f736c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1336ceb
c5f736c
1336ceb
 
c5f736c
 
 
 
 
 
 
 
 
 
1336ceb
 
 
c5f736c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1336ceb
c5f736c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1336ceb
c5f736c
1336ceb
c5f736c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1336ceb
 
 
 
2c1b143
1336ceb
 
c5f736c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import gradio as gr
from ultralytics import YOLO
from typing import List
import time

model = YOLO("yolo11n.pt")


def create_chat_interface():
    """Create a minimal chat interface that mirrors the original structure."""
    
    with gr.Blocks() as demo:
        # Match the original chatbot structure
        chatbot = gr.Chatbot(
            show_label=False,
        )
        
        msg = gr.Textbox(
            show_label=False, 
            placeholder="Type your message here..."
        )
        
        # Keep all the original state objects
        transcript_processor_state = gr.State()
        call_id_state = gr.State()
        colab_id_state = gr.State()
        origin_state = gr.State()
        ct_state = gr.State()
        turl_state = gr.State()
        uid_state = gr.State()
        
        # Keep the streaming functionality
        def respond(
            message: str,
            chat_history: List,
            transcript_processor,
            cid,
            rsid,
            origin,
            ct,
            uid,
        ):
            if not transcript_processor:
                bot_message = "Transcript processor not initialized."
                chat_history.append((message, bot_message))
                return "", chat_history

            chat_history.append((message, ""))
            # Simulate streaming with a simple loop
            for i in range(5):
                partial_response = f"Processing... {i+1}/5"
                chat_history[-1] = (message, partial_response)
                yield "", chat_history
                time.sleep(0.3)
            
            # Final response
            final_response = f"Processed message: {message}\nWith call_id: {cid}"
            chat_history[-1] = (message, final_response)
            yield "", chat_history
        
        # Keep the exact same function call structure
        msg.submit(
            respond,
            [
                msg,
                chatbot,
                transcript_processor_state,
                call_id_state,
                colab_id_state,
                origin_state,
                ct_state,
                uid_state,
            ],
            [msg, chatbot],
        )
        
        # Match the original on_app_load function
        def on_app_load(request: gr.Request):
            # Simplified parameter handling
            cid = "test_cid"
            rsid = "test_rsid"
            origin = "test_origin"
            ct = "test_ct"
            turl = "test_turl"
            uid = "test_uid"
            
            # Create a dummy transcript processor
            transcript_processor = {"initialized": True}
            
            # Initialize with welcome message
            chatbot_value = [(None, "Welcome to the debug interface")]
            
            return [
                chatbot_value,
                transcript_processor,
                cid,
                rsid,
                origin,
                ct,
                turl,
                uid,
            ]
        
        def display_processing_message(chatbot_value):
            """Display the processing message while maintaining state."""
            # Create new chatbot value with processing message
            new_chatbot_value = [
                (None, "Processing... Please wait...")
            ]
            return new_chatbot_value
        
        def stream_initial_analysis(
            chatbot_value, transcript_processor, cid, rsid, origin, ct, uid
        ):
            if not transcript_processor:
                return chatbot_value
            
            # Simulate streaming with a simple loop
            for i in range(3):
                # Update the existing message
                chatbot_value[0] = (None, f"Initial analysis step {i+1}/3...")
                yield chatbot_value
                time.sleep(0.5)
            
            # Final message
            chatbot_value[0] = (None, "Ready to chat! Call ID: " + cid)
            yield chatbot_value
        
        # Keep the exact same load chain
        demo.load(
            on_app_load,
            inputs=None,
            outputs=[
                chatbot,
                transcript_processor_state,
                call_id_state,
                colab_id_state,
                origin_state,
                ct_state,
                turl_state,
                uid_state,
            ],
        ).then(
            display_processing_message,
            inputs=[chatbot],
            outputs=[chatbot],
        ).then(
            stream_initial_analysis,
            inputs=[
                chatbot,
                transcript_processor_state,
                call_id_state,
                colab_id_state,
                origin_state,
                ct_state,
                uid_state,
            ],
            outputs=[chatbot],
        )
    
    return demo

# Launch the application
if __name__ == "__main__":
    app = create_chat_interface()
    app.launch()