File size: 7,573 Bytes
e1cc9d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209

# import streamlit as st
# import faiss
# import pickle
# import numpy as np
# import torch
# from transformers import T5Tokenizer, T5ForConditionalGeneration
# from sentence_transformers import SentenceTransformer

# # Load LLM model (local folder)
# @st.cache_resource
# def load_llm():
#     model_path = "./Generator_Model"
#     tokenizer = T5Tokenizer.from_pretrained(model_path)
#     model = T5ForConditionalGeneration.from_pretrained(model_path)
#     return tokenizer, model

# # Load embedding model (local folder)
# @st.cache_resource
# def load_embedding_model():
#     embed_model_path = "./Embedding_Model1"
#     return SentenceTransformer(embed_model_path)

# # Load FAISS index and embeddings
# @st.cache_resource
# def load_faiss():
#     # Load FAISS index
#     faiss_index = faiss.read_index("faiss_index_file.index")
    
#     # Load the texts (raw data)
#     with open("texts.pkl", "rb") as f:
#         data = pickle.load(f)
        
#     # Load the embeddings
#     embeddings = np.load("embeddings_file.npy", allow_pickle=True)
    
#     return faiss_index, data, embeddings

# # Search function to find top-k contexts based on query
# def search(query, embed_model, index, data, k=5):
#     # Generate query embedding
#     query_embedding = embed_model.encode([query]).astype('float32')
    
#     # Perform FAISS search
#     _, I = index.search(query_embedding, k)  # Top-k results
#     results = [data[i] for i in I[0] if i != -1]
#     return results

# # Generate response using the LLM model (T5 model)
# def generate_response(context, query, tokenizer, model):
#     input_text = f"Context: {context}\n\nQuestion: {query}\n\nAnswer:"
#     inputs = tokenizer.encode(input_text, return_tensors="pt")
#     outputs = model.generate(inputs, max_length=512, do_sample=True, temperature=0.7)
#     response = tokenizer.decode(outputs[0], skip_special_tokens=True)
#     return response

# # Streamlit App
# def main():
#     st.title("Local LLM + FAISS + Embedding Search App")
#     st.markdown("πŸ” Ask a question, and get context-aware answers!")

#     # Load everything once
#     tokenizer, llm_model = load_llm()
#     embed_model = load_embedding_model()
#     faiss_index, data, embeddings = load_faiss()

#     query = st.text_input("Enter your query:")

#     if query:
#         with st.spinner("Processing..."):
#             # Search for relevant contexts based on the query
#             contexts = search(query, embed_model, faiss_index, data)
#             combined_context = " ".join(contexts)

#             # Generate an answer using the LLM model
#             response = generate_response(combined_context, query, tokenizer, llm_model)

#             st.subheader("Response:")
#             st.write(response)

#             # st.subheader("Top Retrieved Contexts:")
#             # for idx, ctx in enumerate(contexts, 1):
#             #     st.markdown(f"**{idx}.** {ctx}")

# if __name__ == "__main__":
#     main()

###########################################
import os
import streamlit as st
import faiss
import pickle
import numpy as np
import torch
import gdown
from transformers import T5Tokenizer, T5ForConditionalGeneration
from sentence_transformers import SentenceTransformer

# Function to download a full folder from Google Drive
def download_folder_from_google_drive(folder_url, output_path):
    if not os.path.exists(output_path):
        gdown.download_folder(url=folder_url, output=output_path, quiet=False, use_cookies=False)

# Download individual files
def download_file_from_google_drive(file_id, destination):
    if not os.path.exists(destination):
        url = f"https://drive.google.com/uc?id={file_id}"
        gdown.download(url, destination, quiet=False)

# Setup models and files
@st.cache_resource
def setup_files():
    os.makedirs("models/embedding_model", exist_ok=True)
    os.makedirs("models/generator_model", exist_ok=True)
    os.makedirs("models/files", exist_ok=True)

    # Download embedding model (folder)
    download_folder_from_google_drive(
        "https://drive.google.com/drive/folders/1GzPk2ehr7rzOr65Am1Hg3A87FOTNHLAM?usp=sharing",
        "models/embedding_model"
    )

    # Download generator model (folder)
    download_folder_from_google_drive(
        "https://drive.google.com/drive/folders/1338KWiBE-6sWsTO2iH7Pgu8eRI7EE7Vr?usp=sharing",
        "models/generator_model"
    )

    # Download FAISS index, texts.pkl, embeddings.npy
    download_file_from_google_drive("11J_VI1buTgnvhoP3z2HM6X5aPzbBO2ed", "models/files/faiss_index_file.index")
    download_file_from_google_drive("1RTEwp8xDgxLnRUiy7ClTskFuTu0GtWBT", "models/files/texts.pkl")
    download_file_from_google_drive("1N54imsqJIJGeqM3buiRzp1ivK_BtC7rR", "models/files/embeddings.npy")

# Paths
EMBEDDING_MODEL_PATH = "models/embedding_model"
GENERATOR_MODEL_PATH = "models/generator_model"
FAISS_INDEX_PATH = "models/files/faiss_index_file.index"
TEXTS_PATH = "models/files/texts.pkl"
EMBEDDINGS_PATH = "models/files/embeddings.npy"

# Load LLM model (Generator model)
@st.cache_resource
def load_llm():
    tokenizer = T5Tokenizer.from_pretrained(GENERATOR_MODEL_PATH)
    model = T5ForConditionalGeneration.from_pretrained(GENERATOR_MODEL_PATH)
    return tokenizer, model

# Load embedding model
@st.cache_resource
def load_embedding_model():
    return SentenceTransformer(EMBEDDING_MODEL_PATH)

# Load FAISS index and embeddings
@st.cache_resource
def load_faiss():
    faiss_index = faiss.read_index(FAISS_INDEX_PATH)
    with open(TEXTS_PATH, "rb") as f:
        data = pickle.load(f)
    embeddings = np.load(EMBEDDINGS_PATH, allow_pickle=True)
    return faiss_index, data, embeddings

# Search top-k contexts
def search(query, embed_model, index, data, k=5):
    query_embedding = embed_model.encode([query]).astype('float32')
    _, I = index.search(query_embedding, k)
    results = [data[i] for i in I[0] if i != -1]
    return results

# Generate response
def generate_response(context, query, tokenizer, model):
    input_text = f"Context: {context}\n\nQuestion: {query}\n\nAnswer:"
    inputs = tokenizer.encode(input_text, return_tensors="pt")
    outputs = model.generate(inputs, max_length=512, do_sample=True, temperature=0.7)
    response = tokenizer.decode(outputs[0], skip_special_tokens=True)
    return response

# Streamlit app
def main():
    st.set_page_config(page_title="Clinical QA with RAG", page_icon="🩺")
    st.title("πŸ”Ž Clinical QA System (RAG + FAISS + T5)")

    st.markdown(
        """

        Enter your **clinical question** below.  

        The system will retrieve relevant context and generate an informed answer using a local model. πŸš€

        """
    )

    # Download + Load everything
    setup_files()
    tokenizer, llm_model = load_llm()
    embed_model = load_embedding_model()
    faiss_index, data, embeddings = load_faiss()

    query = st.text_input("πŸ’¬ Your Question:")

    if query:
        with st.spinner("πŸ” Retrieving and Generating..."):
            contexts = search(query, embed_model, faiss_index, data)
            combined_context = " ".join(contexts)
            response = generate_response(combined_context, query, tokenizer, llm_model)

            st.success("βœ… Answer Ready!")
            st.subheader("πŸ“„ Response:")
            st.write(response)

if __name__ == "__main__":
    main()