Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import pipeline
|
2 |
+
import torch
|
3 |
+
import gradio as gr
|
4 |
+
|
5 |
+
|
6 |
+
def sentiment_analysis(text):
|
7 |
+
analyzer = pipeline("text-classification", model="distilbert/distilbert-base-uncased-finetuned-sst-2-english")
|
8 |
+
sentiment = analyzer(text)
|
9 |
+
return [sentiment[0]['label'], sentiment[0]['score']]
|
10 |
+
|
11 |
+
# Test 1:
|
12 |
+
# print(analyzer(["This is awesome. Reliable product.", "Very expensive product. Company should use better pricing."]))
|
13 |
+
# print(sentiment_analysis(["This is awesome. Reliable product.", "Very expensive product. Company should use better pricing."]))
|
14 |
+
# [{'label': 'POSITIVE', 'score': 0.9998791217803955}, {'label': 'NEGATIVE', 'score': 0.9994811415672302}]
|
15 |
+
|
16 |
+
# Test with Gradio:
|
17 |
+
|
18 |
+
# gr.close_all()
|
19 |
+
|
20 |
+
# version 0.1
|
21 |
+
# demo = gr.Interface(
|
22 |
+
# fn=sentiment_analysis,
|
23 |
+
# inputs=[gr.Textbox(label="Text Input for Sentiment Analysis", lines=4)],
|
24 |
+
# outputs=[gr.Textbox(label="Analyzed Sentiment", lines=4), gr.Textbox(label="Sentiment Strength", lines=1)],
|
25 |
+
# title="GenAI Sentiment Analyzer",
|
26 |
+
# description="This App does seniment analysis of text input")
|
27 |
+
# demo.launch()
|
28 |
+
|
29 |
+
# Uploading an excel file and getting output as required:
|
30 |
+
import pandas as pd
|
31 |
+
import matplotlib.pyplot as plt
|
32 |
+
|
33 |
+
def create_charts(df):
|
34 |
+
# Validate DataFrame
|
35 |
+
if not all(col in df.columns for col in ['Review', 'Sentiment', 'Sentiment Score']):
|
36 |
+
raise ValueError("The DataFrame must contain 'Review', 'Sentiment', and 'Sentiment Score' columns.")
|
37 |
+
# Create Pie Chart for Sentiment Distribution
|
38 |
+
sentiment_counts = df['Sentiment'].value_counts()
|
39 |
+
fig1, ax1 = plt.subplots(figsize=(8, 6))
|
40 |
+
ax1.pie(sentiment_counts, labels=sentiment_counts.index, autopct='%1.1f%%', colors=['skyblue', 'lightcoral'])
|
41 |
+
ax1.set_title('Distribution of Positive and Negative Reviews')
|
42 |
+
|
43 |
+
# Create Scatter Plot for Sentiment Scores
|
44 |
+
fig2, ax2 = plt.subplots(figsize=(10, 6))
|
45 |
+
for sentiment, color in zip(['positive', 'negative'], ['green', 'red']):
|
46 |
+
subset = df[df['Sentiment'].str.lower() == sentiment]
|
47 |
+
ax2.scatter(subset.index, subset['Sentiment Score'], label=sentiment.capitalize(), color=color, alpha=0.6)
|
48 |
+
|
49 |
+
ax2.axhline(0, color='gray', linewidth=0.5)
|
50 |
+
ax2.set_xlabel('Review Index')
|
51 |
+
ax2.set_ylabel('Sentiment Score')
|
52 |
+
ax2.set_title('Scatter Plot of Reviews by Sentiment Score')
|
53 |
+
ax2.legend()
|
54 |
+
|
55 |
+
return fig1, fig2
|
56 |
+
|
57 |
+
|
58 |
+
|
59 |
+
def analyze_reviews(file_path):
|
60 |
+
# Read the Excel file
|
61 |
+
df = pd.read_excel(file_path)
|
62 |
+
|
63 |
+
# Attempt to identify the review column if it is not labeled correctly
|
64 |
+
if 'Review' not in df.columns:
|
65 |
+
for col in df.columns:
|
66 |
+
if df[col].dtype == 'object': # Assuming reviews are text
|
67 |
+
df.rename(columns={col: 'Review'}, inplace=True)
|
68 |
+
break
|
69 |
+
|
70 |
+
# Ensure the dataframe now has a 'Review' column
|
71 |
+
if 'Review' not in df.columns:
|
72 |
+
raise ValueError("The input file must contain a column with review text.")
|
73 |
+
|
74 |
+
# Remove any column that contains serial numbers
|
75 |
+
df = df[[col for col in df.columns if not pd.api.types.is_numeric_dtype(df[col]) or col == 'Review']]
|
76 |
+
|
77 |
+
|
78 |
+
# Apply the get_sentiment function to each review
|
79 |
+
results = df['Review'].apply(sentiment_analysis)
|
80 |
+
|
81 |
+
# Split the results into separate columns for sentiment and sentiment score
|
82 |
+
[df['Sentiment'], df['Sentiment Score']] = zip(*results)
|
83 |
+
|
84 |
+
# Adjust the sentiment score to be negative if the sentiment is negative
|
85 |
+
df.loc[df['Sentiment'] == 'NEGATIVE', 'Sentiment Score'] *= -1
|
86 |
+
|
87 |
+
pie_chart, scatter_plot = create_charts(df)
|
88 |
+
|
89 |
+
return [df, pie_chart, scatter_plot]
|
90 |
+
|
91 |
+
|
92 |
+
# Example usage
|
93 |
+
# file_path = '/teamspace/studios/this_studio/sentiment-analyzer/Sample_Sentiments (1).xlsx'
|
94 |
+
# result_df = analyze_reviews(file_path)
|
95 |
+
# print(result_df)
|
96 |
+
|
97 |
+
|
98 |
+
|
99 |
+
|
100 |
+
gr.close_all()
|
101 |
+
|
102 |
+
# version 0.2
|
103 |
+
demo = gr.Interface(
|
104 |
+
fn=analyze_reviews,
|
105 |
+
inputs=[gr.File(label="Upload your excel file containing user reviews")],
|
106 |
+
outputs=[
|
107 |
+
gr.DataFrame(label="Analysis of the uploaded excel file"),
|
108 |
+
gr.Plot(label="Sentiment Analysis - Positive & Negative"),
|
109 |
+
gr.Plot(label="Sentiment Analysis - Sentiment Score Distribution")
|
110 |
+
],
|
111 |
+
title="GenAI Sentiment Analyzer",
|
112 |
+
description="This App does sentiment analysis of User Reviews")
|
113 |
+
demo.launch()
|
114 |
+
|
115 |
+
|