Spaces:
Sleeping
Sleeping
File size: 46,031 Bytes
06f87ee 77dbca6 06f87ee 5cee7bc 76c554c 77dbca6 dbcd9e2 76c554c dbcd9e2 77dbca6 dbcd9e2 77dbca6 dbcd9e2 77dbca6 dbcd9e2 77dbca6 dbcd9e2 76c554c dbcd9e2 77dbca6 dbcd9e2 76c554c 00d7727 dbcd9e2 00d7727 76c554c dbcd9e2 ba20f39 dbcd9e2 02e7c1e dbcd9e2 02e7c1e 77dbca6 06f87ee 00d7727 76c554c ac98842 06f87ee 00d7727 9f8b4b9 00d7727 76c554c 00d7727 5cee7bc 00d7727 dbcd9e2 77dbca6 dbcd9e2 5c8c0d7 b58b8f2 e0f5fc6 00d7727 dbcd9e2 00d7727 ba20f39 77dbca6 00d7727 6583230 e0f5fc6 77dbca6 00d7727 ac98842 77dbca6 00d7727 77dbca6 00d7727 77dbca6 5cee7bc 00d7727 5cee7bc 48294e4 dbcd9e2 00d7727 77dbca6 00d7727 77dbca6 00d7727 02e7c1e 00d7727 02e7c1e 00d7727 e0f5fc6 00d7727 e0f5fc6 b58b8f2 00d7727 e0f5fc6 00d7727 e0f5fc6 02e7c1e 00d7727 5c8c0d7 b58b8f2 5c8c0d7 e0f5fc6 5c8c0d7 e0f5fc6 5c8c0d7 00d7727 b58b8f2 00d7727 e0f5fc6 00d7727 e0f5fc6 00d7727 77dbca6 96e04ba 77dbca6 96e04ba 77dbca6 96e04ba 77dbca6 ac98842 c24aa0c b58b8f2 96e04ba b58b8f2 96e04ba b58b8f2 96e04ba b58b8f2 96e04ba b58b8f2 96e04ba b58b8f2 96e04ba b58b8f2 96e04ba b58b8f2 5242f3c 77dbca6 ac98842 77dbca6 5cee7bc dbcd9e2 5cee7bc dbcd9e2 5cee7bc dbcd9e2 5cee7bc dbcd9e2 5cee7bc dbcd9e2 77dbca6 5242f3c 77dbca6 96e04ba 5cee7bc 77dbca6 96e04ba 77dbca6 96e04ba 06960f4 5242f3c b58b8f2 06960f4 b58b8f2 5cee7bc b58b8f2 06960f4 b58b8f2 00d7727 b58b8f2 06960f4 76c554c 5242f3c 96e04ba 5242f3c 96e04ba 5242f3c 96e04ba 5242f3c 96e04ba 5242f3c 76c554c ac98842 77dbca6 76c554c ac98842 77dbca6 76c554c 77dbca6 ac98842 77dbca6 ac98842 77dbca6 ac98842 77dbca6 ac98842 77dbca6 00d7727 96e04ba 00d7727 76c554c 06f87ee 77dbca6 ac98842 9069a07 ac98842 00d7727 ac98842 00d7727 9f8b4b9 ac98842 9f8b4b9 ac98842 9f8b4b9 ac98842 9f8b4b9 ac98842 9f8b4b9 ac98842 77dbca6 ac98842 9f8b4b9 ac98842 9f8b4b9 00d7727 ac98842 9f8b4b9 ac98842 00d7727 9f8b4b9 ac98842 00d7727 ac98842 00d7727 ac98842 00d7727 ac98842 00d7727 ac98842 00d7727 ac98842 9f8b4b9 ac98842 9f8b4b9 ac98842 9f8b4b9 ac98842 9f8b4b9 ac98842 77dbca6 00d7727 ac98842 00d7727 ac98842 00d7727 ac98842 77dbca6 ac98842 9f8b4b9 00d7727 ac98842 00d7727 ac98842 9f8b4b9 ac98842 96e04ba ac98842 9f8b4b9 76c554c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 |
import gradio as gr
import json
import os
from pathlib import Path
import time
def create_reranking_interface(task_data):
"""Create a Gradio interface for reranking evaluation."""
samples = task_data["samples"]
results = {"task_name": task_data["task_name"], "task_type": "reranking", "annotations": []}
completed_samples = {s["id"]: False for s in samples}
# Load existing results if available
output_path = f"{task_data['task_name']}_human_results.json"
if os.path.exists(output_path):
try:
with open(output_path, "r") as f:
saved_results = json.load(f)
if "annotations" in saved_results:
results["annotations"] = saved_results["annotations"]
# Update completed_samples based on loaded data
for annotation in saved_results["annotations"]:
sample_id = annotation.get("sample_id")
if sample_id and sample_id in completed_samples:
completed_samples[sample_id] = True
except Exception as e:
print(f"Error loading existing results: {e}")
def save_ranking(rankings, sample_id):
"""Save the current set of rankings."""
try:
# Check if all documents have rankings
if not rankings or len(rankings) == 0:
return "⚠️ No rankings provided", f"Progress: {sum(completed_samples.values())}/{len(samples)}"
all_ranked = all(r is not None and r != "" for r in rankings)
if not all_ranked:
return "⚠️ Please assign a rank to all documents before submitting", f"Progress: {sum(completed_samples.values())}/{len(samples)}"
# Convert rankings to integers with better error handling
try:
processed_rankings = [int(r) for r in rankings]
except ValueError:
return "⚠️ Invalid ranking value. Please use only numbers.", f"Progress: {sum(completed_samples.values())}/{len(samples)}"
# Check for duplicate rankings
if len(set(processed_rankings)) != len(processed_rankings):
return "⚠️ Each document must have a unique rank. Please review your rankings.", f"Progress: {sum(completed_samples.values())}/{len(samples)}"
# Store this annotation in memory
existing_idx = next((i for i, a in enumerate(results["annotations"]) if a["sample_id"] == sample_id), None)
if existing_idx is not None:
results["annotations"][existing_idx] = {
"sample_id": sample_id,
"rankings": processed_rankings
}
else:
results["annotations"].append({
"sample_id": sample_id,
"rankings": processed_rankings
})
completed_samples[sample_id] = True
# Always save to file for redundancy
try:
output_path = f"{task_data['task_name']}_human_results.json"
with open(output_path, "w") as f:
json.dump(results, f, indent=2)
return f"✅ Rankings saved successfully", f"Progress: {sum(completed_samples.values())}/{len(samples)}"
except Exception as file_error:
# If file saving fails, still mark as success since we saved in memory
print(f"File save error: {file_error}")
return f"✅ Rankings saved in memory (file save failed)", f"Progress: {sum(completed_samples.values())}/{len(samples)}"
except Exception as e:
# Return specific error message
print(f"Save ranking error: {e}")
return f"Error: {str(e)}", f"Progress: {sum(completed_samples.values())}/{len(samples)}"
with gr.Blocks(theme=gr.themes.Soft()) as demo:
# Header section with title and progress indicators
with gr.Row(equal_height=True):
with gr.Column(scale=3):
gr.Markdown(f"# {task_data['task_name']} - Human Reranking Evaluation")
with gr.Column(scale=1):
progress_text = gr.Textbox(
label="Progress",
value=f"Progress: 0/{len(samples)}",
interactive=False
)
# Instructions in a collapsible section
with gr.Accordion("📋 Task Instructions", open=False):
gr.Markdown("""
## Task Instructions
{instructions}
### How to use this interface:
1. Read the query at the top
2. Review each document carefully
3. Assign a rank to each document (1 = most relevant, higher numbers = less relevant)
- Use the dropdown menus to select ranks
4. Each document must have a unique rank
5. Click "Submit Rankings" to save rankings for the current query
6. Use "Previous" and "Next" to navigate between queries
7. Your rankings are automatically saved when you submit or navigate (if auto-save is enabled)
8. Click "Save All Results" periodically to ensure all your work is saved to disk
**Button Explanations:**
- **Submit Rankings**: Saves rankings for the CURRENT query only
- **Save All Results**: Saves ALL submitted rankings to a file on disk
- **Auto-save**: When enabled, automatically saves rankings when navigating between queries
""".format(instructions=task_data.get("instructions", "Rank documents by their relevance to the query.")))
# Hidden state variables
current_sample_id = gr.State(value=samples[0]["id"])
auto_save_enabled = gr.State(value=True)
# Status and control section
with gr.Row(equal_height=True):
with gr.Column(scale=3):
status_box = gr.Textbox(
label="Status",
value="Ready to start evaluation",
interactive=False
)
with gr.Column(scale=1):
auto_save_toggle = gr.Checkbox(
label="Auto-save when navigating",
value=True
)
# Main content area
with gr.Group():
# Query section with clear visual distinction
with gr.Box():
gr.Markdown("## 📝 Query")
query_text = gr.Textbox(
value=samples[0]["query"],
label="",
interactive=False,
elem_classes=["query-text"]
)
# Documents section with improved layout
gr.Markdown("## 📄 Documents to Rank")
# Container for documents and rankings
doc_containers = []
ranking_inputs = []
validation_indicators = []
# Create a clean header with explanatory labels for quick ranking tools
gr.Markdown("### Quick Ranking Tools", elem_classes=["tools-header"])
with gr.Box(elem_classes=["tools-container"]):
with gr.Row(equal_height=True):
with gr.Column(scale=4):
sequential_btn = gr.Button("Rank 1,2,3... (Sequential)", variant="secondary")
with gr.Column(scale=4):
reverse_btn = gr.Button("Rank n,n-1... (Reverse)", variant="secondary")
with gr.Column(scale=3):
clear_btn = gr.Button("Clear All Rankings", variant="secondary")
with gr.Row():
gr.Markdown("<small>Use these buttons to quickly assign rankings to all documents at once.</small>", elem_classes=["tools-help"])
# Make document textboxes much smaller
with gr.Box():
for i, doc in enumerate(samples[0]["candidates"]):
row_class = "document-row-even" if i % 2 == 0 else "document-row-odd"
with gr.Row(equal_height=True, elem_classes=["document-row", row_class]):
with gr.Column(scale=1, min_width=50):
gr.HTML(f"<div class='doc-number'>{i+1}</div>")
with gr.Column(scale=7):
doc_box = gr.Textbox(
value=doc,
label=f"Document {i+1}",
interactive=False,
elem_classes=["document-text"],
lines=2, # Reduce to only 2 visible lines
)
doc_containers.append(doc_box)
with gr.Column(scale=2):
# Dropdown for ranking
rank_input = gr.Dropdown(
choices=[str(j) for j in range(1, len(samples[0]["candidates"])+1)],
label=f"Rank",
value="",
elem_classes=["rank-dropdown"]
)
ranking_inputs.append(rank_input)
with gr.Column(scale=2):
# Validation indicator
validation = gr.HTML(value="")
validation_indicators.append(validation)
# Navigation and submission controls
with gr.Row(equal_height=True):
prev_btn = gr.Button("← Previous Query", size="sm")
submit_btn = gr.Button("Submit Rankings", size="lg", variant="primary")
next_btn = gr.Button("Next Query →", size="sm")
# Save results button
with gr.Row():
save_btn = gr.Button("💾 Save All Results", variant="secondary", size="sm")
results_info = gr.HTML(value=f"<p>Results will be saved to <code>{task_data['task_name']}_human_results.json</code></p>")
# CSS for styling
gr.HTML("""
<style>
.query-text textarea {
font-size: 18px !important;
font-weight: bold !important;
background-color: #f8f9fa !important;
border-left: 4px solid #2c7be5 !important;
padding-left: 10px !important;
line-height: 1.6 !important;
}
.document-row {
border-bottom: 1px solid #e0e0e0;
padding: 8px 0;
margin-bottom: 4px !important;
}
.document-text textarea {
font-size: 14px !important;
line-height: 1.4 !important;
padding: 6px !important;
min-height: 60px !important; /* Dramatically reduce minimum height */
height: auto !important;
overflow-y: visible !important;
}
.rank-dropdown select {
font-weight: bold !important;
font-size: 14px !important;
text-align: center !important;
padding: 5px !important;
border-radius: 5px !important;
border: 2px solid #2c7be5 !important;
}
.rank-dropdown select:focus {
border-color: #007bff !important;
box-shadow: 0 0 0 0.2rem rgba(0, 123, 255, 0.25) !important;
}
.tools-container {
background-color: #f8f9fa !important;
border-left: 4px solid #6c757d !important;
padding: 10px !important;
margin-bottom: 15px !important;
border-radius: 5px !important;
}
.tools-header {
margin-bottom: 5px !important;
font-weight: bold !important;
color: #333 !important;
border-bottom: 1px solid #ddd !important;
padding-bottom: 5px !important;
}
.tools-help {
color: #666 !important;
margin-top: 5px !important;
text-align: center !important;
}
.section-header {
margin: 0 !important;
padding-top: 8px !important;
}
.document-row-even {
background-color: #f8f9fa;
}
.document-row-odd {
background-color: #ffffff;
}
.document-row:hover {
background-color: #e9ecef;
}
.doc-number {
display: flex;
align-items: center;
justify-content: center;
width: 25px;
height: 25px;
border-radius: 50%;
background-color: #2c7be5;
color: white;
font-weight: bold;
margin: 0 auto;
font-size: 12px !important;
}
</style>
""")
def validate_rankings(*rankings):
"""Simplified validation with less HTML for better performance."""
results = []
all_valid = True
for rank in rankings:
if rank is None or rank == "":
# Use simpler HTML with less styling for faster rendering
results.append("⚠️ Missing")
all_valid = False
else:
# Use simpler HTML with less styling for faster rendering
results.append("✓ Rank " + str(rank))
return results + [all_valid] # Return validation indicators and validity flag
def on_ranking_change(*rankings):
"""Simplified validation for better performance."""
validation_results = validate_rankings(*rankings)
return validation_results[:-1] # Return only the validation indicators
def submit_rankings(*args):
"""Submit rankings with more efficient validation."""
# Get the last argument (sample_id) and the rankings
if len(args) < 1:
return "Error: No arguments provided", progress_text.value
# Verify we have enough rankings
if len(args) < len(ranking_inputs) + 1:
return "Error: Not enough ranking inputs provided", progress_text.value
sample_id = args[-1]
rankings = args[:len(ranking_inputs)]
# First validate the rankings
validation_results = validate_rankings(*rankings)
all_valid = validation_results[-1] # Last item is validity flag
validation_indicators_values = validation_results[:-1] # Remove validity flag
# Update validation indicators - less frequently
# Only update if really needed
for i, result in enumerate(validation_indicators_values):
if i < len(validation_indicators):
validation_indicators[i].update(value=result)
# Check for duplicate rankings
if all_valid:
try:
processed_rankings = [int(r) for r in rankings]
if len(set(processed_rankings)) != len(processed_rankings):
dup_ranks = {}
for i, r in enumerate(processed_rankings):
if r in dup_ranks:
dup_ranks[r].append(i)
else:
dup_ranks[r] = [i]
# Use simpler HTML for duplicate messages
for rank, indices in dup_ranks.items():
if len(indices) > 1:
for idx in indices:
if idx < len(validation_indicators):
validation_indicators[idx].update(
value=f"⚠️ Duplicate {rank}"
)
return "⚠️ Each document must have a unique rank. Please fix duplicate rankings.", progress_text.value
except:
pass
# If not all valid, return error message
if not all_valid:
return "⚠️ Please assign a rank to all documents before submitting", progress_text.value
# Save the validated rankings
status, progress = save_ranking(rankings, sample_id)
# Provide clear success feedback - with simpler HTML
if "✅" in status:
for i in range(len(validation_indicators)):
validation_indicators[i].update(
value="✓ Saved"
)
return status, progress
def load_sample(sample_id):
"""Load a specific sample into the interface."""
sample = next((s for s in samples if s["id"] == sample_id), None)
if not sample:
return [query_text.value] + [d.value for d in doc_containers] + [""] * len(ranking_inputs) + [""] * len(validation_indicators) + [sample_id, progress_text.value, status_box.value]
# Update query
new_query = sample["query"]
# Update documents
new_docs = []
for i, doc in enumerate(sample["candidates"]):
if i < len(doc_containers):
new_docs.append(doc)
# Initialize rankings
new_rankings = [""] * len(ranking_inputs)
# Check if this sample has already been annotated
existing_annotation = next((a for a in results["annotations"] if a["sample_id"] == sample_id), None)
if existing_annotation:
# Restore previous rankings
for i, rank in enumerate(existing_annotation["rankings"]):
if i < len(new_rankings) and rank is not None:
new_rankings[i] = str(rank)
# Update progress
current_idx = samples.index(sample)
new_progress = f"Progress: {sum(completed_samples.values())}/{len(samples)}"
new_status = f"Viewing query {current_idx + 1} of {len(samples)}"
if completed_samples[sample_id]:
new_status += " (already completed)"
# Initialize validation indicators
validation_results = validate_rankings(*new_rankings)
validation_indicators_values = validation_results[:-1] # Remove validity flag
return [new_query] + new_docs + new_rankings + validation_indicators_values + [sample_id, new_progress, new_status]
def auto_save_and_navigate(direction, current_id, auto_save, *rankings):
"""Save rankings if auto-save is enabled, then navigate."""
# Extract rankings (remove validation indicators)
actual_rankings = rankings[:len(ranking_inputs)]
# If auto-save is enabled, try to save the current rankings
status_msg = ""
progress_msg = f"Progress: {sum(completed_samples.values())}/{len(samples)}"
if auto_save:
# Only save if all rankings are provided
validation_results = validate_rankings(*actual_rankings)
all_valid = validation_results[-1] # Last item is validity flag
if all_valid:
status_msg, progress_msg = save_ranking(actual_rankings, current_id)
# Navigate to the next/previous sample
if direction == "next":
new_id = next_sample(current_id)
else:
new_id = prev_sample(current_id)
# Return the new sample ID and status message
return new_id, status_msg, progress_msg
def next_sample(current_id):
"""Load the next sample."""
current_sample = next((s for s in samples if s["id"] == current_id), None)
if not current_sample:
return current_id
current_idx = samples.index(current_sample)
if current_idx < len(samples) - 1:
next_sample = samples[current_idx + 1]
return next_sample["id"]
return current_id
def prev_sample(current_id):
"""Load the previous sample."""
current_sample = next((s for s in samples if s["id"] == current_id), None)
if not current_sample:
return current_id
current_idx = samples.index(current_sample)
if current_idx > 0:
prev_sample = samples[current_idx - 1]
return prev_sample["id"]
return current_id
def save_results():
"""Save all collected results to a file."""
output_path = f"{task_data['task_name']}_human_results.json"
try:
with open(output_path, "w") as f:
json.dump(results, f, indent=2)
return f"✅ Results saved to {output_path} ({len(results['annotations'])} annotations)"
except Exception as e:
return f"Error saving results: {str(e)}"
# Define functions for the quick ranking buttons
def assign_sequential_ranks():
values = [str(i+1) for i in range(len(samples[0]["candidates"]))]
# Skip validation until all ranks are assigned
return values
def assign_reverse_ranks():
n = len(samples[0]["candidates"])
values = [str(n-i) for i in range(n)]
# Skip validation until all ranks are assigned
return values
def clear_rankings():
values = [""] * len(samples[0]["candidates"])
# Clear validation indicators when clearing rankings
for indicator in validation_indicators:
indicator.update(value="")
return values
# Connect quick ranking buttons
sequential_btn.click(
fn=assign_sequential_ranks,
inputs=None,
outputs=ranking_inputs
)
reverse_btn.click(
fn=assign_reverse_ranks,
inputs=None,
outputs=ranking_inputs
)
clear_btn.click(
fn=clear_rankings,
inputs=None,
outputs=ranking_inputs
)
# Wire up events (Gradio 3.x syntax)
submit_btn.click(
fn=submit_rankings,
inputs=ranking_inputs + [current_sample_id],
outputs=[status_box, progress_text]
)
# Auto-save and navigate events
def handle_next(current_id, auto_save, *rankings):
# First, handle auto-save - only if needed
if auto_save and any(r != "" for r in rankings):
new_id, status, progress = auto_save_and_navigate("next", current_id, auto_save, *rankings)
else:
new_id = next_sample(current_id)
status, progress = "", f"Progress: {sum(completed_samples.values())}/{len(samples)}"
# Then, load the new sample with minimal validation
outputs = load_sample(new_id)
# Update only status and progress if needed
if status:
outputs[-2] = progress
outputs[-1] = status
return outputs
def handle_prev(current_id, auto_save, *rankings):
# First, handle auto-save - only if needed
if auto_save and any(r != "" for r in rankings):
new_id, status, progress = auto_save_and_navigate("prev", current_id, auto_save, *rankings)
else:
new_id = prev_sample(current_id)
status, progress = "", f"Progress: {sum(completed_samples.values())}/{len(samples)}"
# Then, load the new sample with minimal validation
outputs = load_sample(new_id)
# Update only status and progress if needed
if status:
outputs[-2] = progress
outputs[-1] = status
return outputs
# Connect navigation with Gradio 3.x syntax
next_btn.click(
fn=handle_next,
inputs=[current_sample_id, auto_save_toggle] + ranking_inputs,
outputs=[query_text] + doc_containers + ranking_inputs + validation_indicators + [current_sample_id, progress_text, status_box]
)
prev_btn.click(
fn=handle_prev,
inputs=[current_sample_id, auto_save_toggle] + ranking_inputs,
outputs=[query_text] + doc_containers + ranking_inputs + validation_indicators + [current_sample_id, progress_text, status_box]
)
# Connect save button
save_btn.click(
fn=save_results,
inputs=None,
outputs=[status_box]
)
# Connect auto-save toggle
def update_auto_save(enabled):
return enabled
auto_save_toggle.change(
fn=update_auto_save,
inputs=[auto_save_toggle],
outputs=[auto_save_enabled]
)
# Reduce frequency of validation
# Only connect validation to the first ranking input to reduce event handlers
ranking_inputs[0].change(
fn=on_ranking_change,
inputs=ranking_inputs,
outputs=validation_indicators
)
# Helper function for ranking - sort documents by rankings
def rank_by_relevance(*args):
"""Sorts the documents by their current rankings for a clearer view."""
# Last argument is sample_id
sample_id = args[-1]
rankings = args[:-1]
# Check if we have valid rankings
valid_rankings = []
for i, r in enumerate(rankings):
if r is not None and r != "":
try:
valid_rankings.append((i, int(r)))
except:
pass
# If we don't have enough valid rankings, do nothing
if len(valid_rankings) < 2:
return [status_box.value]
# Sort by rank
valid_rankings.sort(key=lambda x: x[1])
# Generate message showing the ranking order
result = "<p><strong>Current ranking order:</strong></p><ol>"
for idx, _ in valid_rankings:
doc_text = doc_containers[idx].value
# Truncate if too long
if len(doc_text) > 100:
doc_text = doc_text[:97] + "..."
result += f"<li>Doc {idx+1}: {doc_text}</li>"
result += "</ol>"
return [result]
return demo
# Main app with file upload capability and improved task management
def create_main_app():
with gr.Blocks(theme=gr.themes.Soft()) as app:
gr.Markdown("# MTEB Human Evaluation Demo")
task_container = gr.HTML()
loaded_task_info = gr.JSON(label="Loaded Task Information", visible=False)
# CSS for consistent styling throughout the app
gr.HTML("""
<style>
/* Main App Styling */
.tab-content {
padding: 15px !important;
}
.btn-primary {
background-color: #2c7be5 !important;
}
.btn-secondary {
background-color: #6c757d !important;
}
/* Status messages */
.status-message {
font-weight: bold !important;
}
/* Box styling */
.content-box {
border: 1px solid #e0e0e0;
border-radius: 5px;
padding: 15px;
margin-bottom: 15px;
background-color: #f8f9fa;
}
/* Section headers */
.section-header {
border-bottom: 2px solid #2c7be5;
padding-bottom: 5px;
margin-bottom: 15px;
}
</style>
""")
tabs = gr.Tabs()
with tabs:
with gr.TabItem("Demo"):
gr.Markdown("""
## MTEB Human Evaluation Interface
This interface allows you to evaluate the relevance of documents for reranking tasks.
""", elem_classes=["section-header"])
# Function to get the most recent task file
def get_latest_task_file():
# Check first in uploaded_tasks directory
os.makedirs("uploaded_tasks", exist_ok=True)
uploaded_tasks = [f for f in os.listdir("uploaded_tasks") if f.endswith(".json")]
if uploaded_tasks:
# Sort by modification time, newest first
uploaded_tasks.sort(key=lambda x: os.path.getmtime(os.path.join("uploaded_tasks", x)), reverse=True)
task_path = os.path.join("uploaded_tasks", uploaded_tasks[0])
# Verify this is a valid task file
try:
with open(task_path, "r") as f:
task_data = json.load(f)
if "task_name" in task_data and "samples" in task_data:
return task_path
except:
pass
# Look for task files in the current directory
current_dir_tasks = [f for f in os.listdir(".") if f.endswith("_human_eval.json")]
if current_dir_tasks:
# Sort by modification time, newest first
current_dir_tasks.sort(key=lambda x: os.path.getmtime(x), reverse=True)
return current_dir_tasks[0]
# Fall back to fixed example if available
if os.path.exists("AskUbuntuDupQuestions_human_eval.json"):
return "AskUbuntuDupQuestions_human_eval.json"
# No valid task file found
return None
# Load the task file
task_file = get_latest_task_file()
with gr.Box(elem_classes=["content-box"]):
if task_file:
try:
with open(task_file, "r") as f:
task_data = json.load(f)
# Show which task is currently loaded
gr.Markdown(f"**Current Task: {task_data['task_name']}** ({len(task_data['samples'])} samples)")
# Display the interface
demo = create_reranking_interface(task_data)
task_container.update(value=f"<p>Task loaded: {task_file}</p>")
except Exception as e:
gr.Markdown(f"**Error loading task: {str(e)}**", elem_classes=["status-message"])
gr.Markdown("Please upload a valid task file in the 'Upload & Evaluate' tab.")
else:
gr.Markdown("**No task file found**", elem_classes=["status-message"])
gr.Markdown("Please upload a valid task file in the 'Upload & Evaluate' tab.")
with gr.TabItem("Upload & Evaluate"):
gr.Markdown("""
## Upload Your Own Task File
If you have a prepared task file, you can upload it here to create an evaluation interface.
""", elem_classes=["section-header"])
with gr.Row():
with gr.Column(scale=1):
with gr.Box(elem_classes=["content-box"]):
file_input = gr.File(label="Upload a task file (JSON)")
load_btn = gr.Button("Load Task", variant="primary")
message = gr.Textbox(label="Status", interactive=False, elem_classes=["status-message"])
# Add task list for previously uploaded tasks
with gr.Box(elem_classes=["content-box"]):
gr.Markdown("### Previous Uploads", elem_classes=["section-header"])
# Function to list existing task files in the tasks directory
def list_task_files():
os.makedirs("uploaded_tasks", exist_ok=True)
tasks = [f for f in os.listdir("uploaded_tasks") if f.endswith(".json")]
if not tasks:
return "No task files uploaded yet."
return "\n".join([f"- {t}" for t in tasks])
task_list = gr.Markdown(list_task_files())
refresh_btn = gr.Button("Refresh List")
# Add results management section
with gr.Box(elem_classes=["content-box"]):
gr.Markdown("### Results Management", elem_classes=["section-header"])
# Function to list existing result files
def list_result_files():
results = [f for f in os.listdir(".") if f.endswith("_human_results.json")]
if not results:
return "No result files available yet."
result_links = []
for r in results:
# Calculate completion stats
try:
with open(r, "r") as f:
result_data = json.load(f)
annotation_count = len(result_data.get("annotations", []))
task_name = result_data.get("task_name", "Unknown")
result_links.append(f"- {r} ({annotation_count} annotations for {task_name})")
except:
result_links.append(f"- {r}")
return "\n".join(result_links)
results_list = gr.Markdown(list_result_files())
download_results_btn = gr.Button("Download Results")
# Handle file upload and storage
def handle_upload(file):
if not file:
return "Please upload a task file", task_list.value, ""
try:
# Create directory if it doesn't exist
os.makedirs("uploaded_tasks", exist_ok=True)
# Read the uploaded file
with open(file.name, "r") as f:
task_data = json.load(f)
# Validate task format
if "task_name" not in task_data or "samples" not in task_data:
return "Invalid task file format. Must contain 'task_name' and 'samples' fields.", task_list.value, ""
# Save to a consistent location
task_filename = f"uploaded_tasks/{task_data['task_name']}_task.json"
with open(task_filename, "w") as f:
json.dump(task_data, f, indent=2)
return f"✅ Task '{task_data['task_name']}' uploaded successfully with {len(task_data['samples'])} samples. Please refresh the app and use the Demo tab to evaluate it.", list_task_files(), f"""
<div class="content-box">
<h3>Task uploaded successfully!</h3>
<p>Task Name: {task_data['task_name']}</p>
<p>Samples: {len(task_data['samples'])}</p>
<p>To evaluate this task:</p>
<ol>
<li>Refresh the app</li>
<li>The Demo tab will now use your uploaded task</li>
<li>Complete your evaluations</li>
<li>Results will be saved as {task_data['task_name']}_human_results.json</li>
</ol>
</div>
"""
except Exception as e:
return f"⚠️ Error processing task file: {str(e)}", task_list.value, ""
# Function to prepare results for download
def prepare_results_for_download():
results = [f for f in os.listdir(".") if f.endswith("_human_results.json")]
if not results:
return None
# Create a zip file with all results
import zipfile
zip_path = "mteb_human_eval_results.zip"
with zipfile.ZipFile(zip_path, 'w') as zipf:
for r in results:
zipf.write(r)
return zip_path
# Connect events
load_btn.click(
fn=handle_upload,
inputs=[file_input],
outputs=[message, task_list, task_container]
)
refresh_btn.click(
fn=list_task_files,
inputs=None,
outputs=[task_list]
)
download_results_btn.click(
fn=prepare_results_for_download,
inputs=None,
outputs=[gr.File(label="Download Results")]
)
with gr.TabItem("Results Management"):
gr.Markdown("""
## Manage Evaluation Results
View, download, and analyze your evaluation results.
""", elem_classes=["section-header"])
# Function to load and display result stats
def get_result_stats():
results = [f for f in os.listdir(".") if f.endswith("_human_results.json")]
if not results:
return "No result files available yet."
stats = []
for r in results:
try:
with open(r, "r") as f:
result_data = json.load(f)
task_name = result_data.get("task_name", "Unknown")
annotations = result_data.get("annotations", [])
annotation_count = len(annotations)
# Calculate completion percentage
sample_ids = set(a.get("sample_id") for a in annotations)
# Try to get the total sample count from the corresponding task file
total_samples = 0
# Try uploaded_tasks directory first
task_file = f"uploaded_tasks/{task_name}_task.json"
if os.path.exists(task_file):
with open(task_file, "r") as f:
task_data = json.load(f)
total_samples = len(task_data.get("samples", []))
else:
# Try human_eval file in current directory
task_file = f"{task_name}_human_eval.json"
if os.path.exists(task_file):
with open(task_file, "r") as f:
task_data = json.load(f)
total_samples = len(task_data.get("samples", []))
completion = f"{len(sample_ids)}/{total_samples}" if total_samples else f"{len(sample_ids)} samples"
stats.append(f"### {task_name}\n- Annotations: {annotation_count}\n- Completion: {completion}\n- File: {r}")
except Exception as e:
stats.append(f"### {r}\n- Error loading results: {str(e)}")
return "\n\n".join(stats)
with gr.Box(elem_classes=["content-box"]):
result_stats = gr.Markdown(get_result_stats())
refresh_results_btn = gr.Button("Refresh Results", variant="secondary")
# Add download options
with gr.Box(elem_classes=["content-box"]):
gr.Markdown("### Download Options", elem_classes=["section-header"])
with gr.Row():
download_all_btn = gr.Button("Download All Results (ZIP)", variant="primary")
result_select = gr.Dropdown(choices=[f for f in os.listdir(".") if f.endswith("_human_results.json")], label="Select Result to Download")
download_selected_btn = gr.Button("Download Selected", variant="secondary")
# Function to prepare all results for download as ZIP
def prepare_all_results():
import zipfile
zip_path = "mteb_human_eval_results.zip"
with zipfile.ZipFile(zip_path, 'w') as zipf:
for r in [f for f in os.listdir(".") if f.endswith("_human_results.json")]:
zipf.write(r)
return zip_path
# Function to return a single result file
def get_selected_result(filename):
if not filename:
return None
if os.path.exists(filename):
return filename
return None
# Update dropdown when refreshing results
def update_result_dropdown():
return gr.Dropdown.update(choices=[f for f in os.listdir(".") if f.endswith("_human_results.json")])
# Connect events
refresh_results_btn.click(
fn=get_result_stats,
inputs=None,
outputs=[result_stats]
)
refresh_results_btn.click(
fn=update_result_dropdown,
inputs=None,
outputs=[result_select]
)
download_all_btn.click(
fn=prepare_all_results,
inputs=None,
outputs=[gr.File(label="Download All Results")]
)
download_selected_btn.click(
fn=get_selected_result,
inputs=[result_select],
outputs=[gr.File(label="Download Selected Result")]
)
return app
# Create the app
demo = create_main_app()
if __name__ == "__main__":
demo.launch()
|