Spaces:
Sleeping
Sleeping
File size: 31,164 Bytes
06f87ee e4647ff 76c554c 43b6806 76c554c 43b6806 76c554c 06f87ee 76c554c 06f87ee 76c554c 9f8b4b9 76c554c c24aa0c 76c554c c24aa0c 76c554c c24aa0c 76c554c c24aa0c 76c554c c24aa0c 76c554c c24aa0c 76c554c 255d500 76c554c 43b6806 76c554c f2ae706 76c554c f2ae706 e4647ff f2ae706 76c554c 43b6806 76c554c 43b6806 76c554c 43b6806 255d500 76c554c 43b6806 76c554c f2ae706 e4647ff 76c554c 43b6806 76c554c 06f87ee 76c554c 9f8b4b9 06f87ee 9f8b4b9 76c554c 9f8b4b9 76c554c 9f8b4b9 76c554c 9f8b4b9 76c554c 9f8b4b9 9069a07 9f8b4b9 42ed941 9f8b4b9 42ed941 9f8b4b9 e1f1819 9f8b4b9 e1f1819 9f8b4b9 a3a2c22 9f8b4b9 76c554c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 |
import gradio as gr
import json
import os
from pathlib import Path
def create_reranking_interface(task_data):
"""Create a Gradio interface for reranking evaluation using drag and drop."""
samples = task_data["samples"]
results = {"task_name": task_data["task_name"], "task_type": "reranking", "annotations": []}
completed_samples = {s["id"]: False for s in samples}
# Define helper functions before UI elements are created
def generate_sortable_html(candidates, existing_ranks=None):
"""Generate the HTML for the sortable list with up/down buttons."""
if existing_ranks and len(existing_ranks) == len(candidates):
order = sorted(range(len(candidates)), key=lambda i: existing_ranks[i])
else:
order = list(range(len(candidates)))
html = '<div id="sortable-container" class="sortable-container">'
for rank_minus_1, idx in enumerate(order):
if idx < len(candidates):
doc = candidates[idx]
rank = rank_minus_1 + 1
import html as html_escaper
escaped_doc = html_escaper.escape(doc)
# Add navigation buttons (up/down arrows)
up_disabled = "disabled" if rank == 1 else ""
down_disabled = "disabled" if rank == len(candidates) else ""
html += f'''\
<div class="sortable-item rank-bg-{rank}" data-doc-id="{idx}" data-rank="{rank}">
<div class="rank-controls">
<button class="rank-btn up-btn" {up_disabled} onclick="moveItemUp({rank})">β²</button>
<div class="rank-badge">{rank}</div>
<button class="rank-btn down-btn" {down_disabled} onclick="moveItemDown({rank})">βΌ</button>
</div>
<div class="doc-content">{escaped_doc}</div>
</div>
'''
html += '</div>'
return html
def save_ranking(order_json, sample_id):
"""Save the current ranking to results."""
try:
if not order_json or order_json == "[]":
return "β οΈ Drag documents to set the ranking before submitting.", progress_text.value
order = json.loads(order_json)
num_candidates = len(next(s["candidates"] for s in samples if s["id"] == sample_id))
if len(order) != num_candidates:
return f"β οΈ Ranking order length mismatch. Expected {num_candidates}, got {len(order)}.", progress_text.value
rankings = [0] * num_candidates
for rank_minus_1, doc_idx in enumerate(order):
if doc_idx < num_candidates:
rankings[doc_idx] = rank_minus_1 + 1
else:
raise ValueError(f"Invalid document index {doc_idx} found in order.")
if sorted(rankings) != list(range(1, num_candidates + 1)):
return "β οΈ Ranking validation failed. Ranks are not 1 to N.", progress_text.value
annotation = {"sample_id": sample_id, "rankings": rankings}
existing_idx = next((i for i, a in enumerate(results["annotations"]) if a["sample_id"] == sample_id), None)
if existing_idx is not None:
results["annotations"][existing_idx] = annotation
else:
results["annotations"].append(annotation)
completed_samples[sample_id] = True
output_path = f"{task_data['task_name']}_human_results.json"
with open(output_path, "w") as f:
json.dump(results, f, indent=2)
return f"β
Rankings saved successfully ({len(results['annotations'])}/{len(samples)} completed)", f"Progress: {sum(completed_samples.values())}/{len(samples)}"
except json.JSONDecodeError:
return "β οΈ Error decoding ranking order. Please try again.", progress_text.value
except Exception as e:
import traceback
print(traceback.format_exc())
return f"Error saving ranking: {str(e)}", progress_text.value
def load_sample(sample_id):
"""Load a sample into the interface."""
try:
sample = next((s for s in samples if s["id"] == sample_id), None)
if not sample:
return gr.update(), gr.update(value="[]"), gr.update(), gr.update()
existing_ranking = next((anno["rankings"] for anno in results["annotations"] if anno["sample_id"] == sample_id), None)
new_html = generate_sortable_html(sample["candidates"], existing_ranking)
status = "Ready to rank" if not completed_samples.get(sample_id, False) else "Already ranked"
progress = f"Progress: {sum(completed_samples.values())}/{len(samples)}"
return sample["query"], new_html, "[]", progress, status
except Exception as e:
return gr.update(), gr.update(value="[]"), gr.update(), gr.update(value=f"Error loading sample: {str(e)}")
def next_sample_id(current_id):
current_idx = next((i for i, s in enumerate(samples) if s["id"] == current_id), -1)
if current_idx == -1:
return current_id
next_idx = min(current_idx + 1, len(samples) - 1)
return samples[next_idx]["id"]
def prev_sample_id(current_id):
current_idx = next((i for i, s in enumerate(samples) if s["id"] == current_id), -1)
if current_idx == -1:
return current_id
prev_idx = max(current_idx - 1, 0)
return samples[prev_idx]["id"]
def save_results():
output_path = f"{task_data['task_name']}_human_results.json"
try:
with open(output_path, "w") as f:
json.dump(results, f, indent=2)
return f"β
Results saved to {output_path} ({len(results['annotations'])} annotations)"
except Exception as e:
return f"β οΈ Error saving results file: {str(e)}"
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown(f"# {task_data['task_name']} - Human Reranking Evaluation")
with gr.Accordion("Instructions", open=True):
gr.Markdown("""
## Task Instructions
{instructions}
### How to use this interface:
1. Read the query at the top
2. Drag and drop documents to reorder them based on relevance
3. Top document = Rank 1, Second = Rank 2, etc.
4. Click "Submit Rankings" when you're done with the current query
5. Use "Previous" and "Next" to navigate between queries
6. Click "Save All Results" periodically to ensure your work is saved
""".format(instructions=task_data["instructions"]))
current_sample_id = gr.State(value=samples[0]["id"])
with gr.Row():
progress_text = gr.Textbox(label="Progress", value=f"Progress: 0/{len(samples)}", interactive=False)
status_box = gr.Textbox(label="Status", value="Ready to start evaluation", interactive=False)
with gr.Group():
gr.Markdown("## Query:")
query_text = gr.Textbox(value=samples[0]["query"], label="", interactive=False)
gr.Markdown("## Documents to Rank (Drag to Reorder):")
sortable_list = gr.HTML(generate_sortable_html(samples[0]["candidates"], []), elem_id="sortable-list-container")
order_state = gr.Textbox(value="[]", visible=False, elem_id="current-order")
with gr.Row():
prev_btn = gr.Button("β Previous Query", size="sm", elem_id="prev-btn")
submit_btn = gr.Button("Submit Rankings", size="lg", variant="primary", elem_id="submit-btn")
next_btn = gr.Button("Next Query β", size="sm", elem_id="next-btn")
save_btn = gr.Button("πΎ Save All Results", variant="secondary")
js_code = """
<script src="https://cdn.jsdelivr.net/npm/[email protected]/Sortable.min.js"></script>
<script>
// Function to move an item up in the ranking
function moveItemUp(currentRank) {
if (currentRank <= 1) return; // Already at the top
const container = document.getElementById('sortable-container');
if (!container) return;
const items = container.querySelectorAll('.sortable-item');
const itemsArray = Array.from(items);
// Find the items to swap
const currentItem = itemsArray.find(item => item.getAttribute('data-rank') == currentRank);
const aboveItem = itemsArray.find(item => item.getAttribute('data-rank') == currentRank - 1);
if (!currentItem || !aboveItem) return;
// Swap the items
aboveItem.parentNode.insertBefore(currentItem, aboveItem);
// Update ranks
updateRanksAfterMove();
}
// Function to move an item down in the ranking
function moveItemDown(currentRank) {
const container = document.getElementById('sortable-container');
if (!container) return;
const items = container.querySelectorAll('.sortable-item');
if (currentRank >= items.length) return; // Already at the bottom
const itemsArray = Array.from(items);
// Find the items to swap
const currentItem = itemsArray.find(item => item.getAttribute('data-rank') == currentRank);
const belowItem = itemsArray.find(item => item.getAttribute('data-rank') == currentRank + 1);
if (!currentItem || !belowItem) return;
// Swap the items
belowItem.parentNode.insertBefore(belowItem, currentItem);
// Update ranks
updateRanksAfterMove();
}
// Update rank numbers and classes after moving
function updateRanksAfterMove() {
const container = document.getElementById('sortable-container');
if (!container) return;
const items = container.querySelectorAll('.sortable-item');
const orderInput = document.querySelector('#current-order textarea');
if (!orderInput) return;
const order = [];
items.forEach((item, index) => {
const rank = index + 1;
const docId = parseInt(item.getAttribute('data-doc-id'));
// Update rank display
const rankBadge = item.querySelector('.rank-badge');
if (rankBadge) rankBadge.textContent = rank;
// Update item classes
item.className = item.className.replace(/rank-bg-\d+/g, '').trim();
item.classList.add(`rank-bg-${rank}`);
// Update data attribute
item.setAttribute('data-rank', rank);
// Update button states
const upBtn = item.querySelector('.up-btn');
const downBtn = item.querySelector('.down-btn');
if (upBtn) {
if (rank == 1) {
upBtn.setAttribute('disabled', 'disabled');
} else {
upBtn.removeAttribute('disabled');
}
}
if (downBtn) {
if (rank == items.length) {
downBtn.setAttribute('disabled', 'disabled');
} else {
downBtn.removeAttribute('disabled');
}
}
order.push(docId);
});
// Update hidden input
const newOrderValue = JSON.stringify(order);
if (orderInput.value !== newOrderValue) {
orderInput.value = newOrderValue;
const event = new Event('input', { bubbles: true });
orderInput.dispatchEvent(event);
}
}
document.addEventListener('DOMContentLoaded', function() {
function initializeSortable() {
// Initialize event handlers for buttons
updateRanksAfterMove();
// Keep drag-and-drop as a fallback
const container = document.getElementById('sortable-container');
if (!container) {
console.log('Container not found, retrying...');
setTimeout(initializeSortable, 200);
return;
}
if (typeof Sortable === 'undefined') {
console.log('Sortable not loaded, retrying...');
setTimeout(initializeSortable, 200);
return;
}
if (container.sortableInstance) {
return;
}
container.sortableInstance = new Sortable(container, {
animation: 150,
ghostClass: "sortable-ghost",
onEnd: function() {
updateRanksAfterMove();
}
});
}
// Initialize immediately and also set up a mutation observer
initializeSortable();
const targetNode = document.getElementById('sortable-list-container');
if (targetNode) {
const config = { childList: true, subtree: true };
const observer = new MutationObserver(function(mutationsList) {
for(const mutation of mutationsList) {
if (mutation.type === 'childList') {
if (document.getElementById('sortable-container')) {
initializeSortable();
}
}
}
});
observer.observe(targetNode, config);
}
});
</script>
<style>
.sortable-container {
display: flex;
flex-direction: column;
gap: 8px;
min-height: 200px;
padding: 10px;
background-color: #f8f9fa;
border-radius: 8px;
}
.sortable-item {
padding: 12px 15px;
background-color: #fff;
border: 1px solid #e0e0e0;
border-radius: 6px;
cursor: grab;
display: flex;
align-items: center;
transition: all 0.2s ease;
user-select: none;
}
.sortable-item:hover {
background-color: #f8f9fa;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
}
.sortable-ghost {
background-color: #e3f2fd !important;
border-style: dashed !important;
opacity: 0.8;
}
.sortable-chosen {
cursor: grabbing;
box-shadow: 0 4px 8px rgba(0,0,0,0.1);
}
.rank-controls {
display: flex;
flex-direction: column;
align-items: center;
margin-right: 15px;
}
.rank-badge {
display: flex;
align-items: center;
justify-content: center;
width: 28px;
height: 28px;
border-radius: 50%;
background-color: #6c757d;
color: white;
font-weight: bold;
margin: 4px 0;
flex-shrink: 0;
}
.rank-btn {
border: none;
background: #f0f0f0;
border-radius: 4px;
width: 24px;
height: 24px;
font-size: 12px;
line-height: 1;
display: flex;
align-items: center;
justify-content: center;
cursor: pointer;
color: #333;
}
.rank-btn:hover:not([disabled]) {
background: #e0e0e0;
}
.rank-btn:disabled {
opacity: 0.5;
cursor: not-allowed;
}
.doc-content {
flex: 1;
line-height: 1.4;
word-break: break-word;
}
.rank-bg-1 .rank-badge { background-color: #198754; }
.rank-bg-2 .rank-badge { background-color: #20c997; }
.rank-bg-3 .rank-badge { background-color: #ffc107; color: #333; }
.rank-bg-4 .rank-badge { background-color: #fd7e14; }
.rank-bg-5 .rank-badge { background-color: #dc3545; }
.rank-bg-6 .rank-badge, .rank-bg-7 .rank-badge { background-color: #6f42c1; }
.rank-bg-8 .rank-badge, .rank-bg-9 .rank-badge { background-color: #d63384; }
.rank-bg-10 .rank-badge, .rank-bg-11 .rank-badge, .rank-bg-12 .rank-badge,
.rank-bg-13 .rank-badge, .rank-bg-14 .rank-badge, .rank-bg-15 .rank-badge,
.rank-bg-16 .rank-badge, .rank-bg-17 .rank-badge, .rank-bg-18 .rank-badge,
.rank-bg-19 .rank-badge, .rank-bg-20 .rank-badge {
background-color: #6c757d;
}
</style>
"""
gr.HTML(js_code)
submit_btn.click(
save_ranking,
inputs=[order_state, current_sample_id],
outputs=[status_box, progress_text]
)
next_btn.click(
next_sample_id, inputs=[current_sample_id], outputs=[current_sample_id]
).then(
load_sample,
inputs=[current_sample_id],
outputs=[query_text, sortable_list, order_state, progress_text, status_box]
)
prev_btn.click(
prev_sample_id, inputs=[current_sample_id], outputs=[current_sample_id]
).then(
load_sample,
inputs=[current_sample_id],
outputs=[query_text, sortable_list, order_state, progress_text, status_box]
)
save_btn.click(save_results, outputs=[status_box])
demo.load(lambda: load_sample(samples[0]['id']),
outputs=[query_text, sortable_list, order_state, progress_text, status_box])
return demo
# Main app with file upload capability
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# MTEB Human Evaluation Demo")
with gr.Tabs():
with gr.TabItem("Demo"):
gr.Markdown("""
## MTEB Human Evaluation Interface
This interface allows you to evaluate the relevance of documents for reranking tasks.
""")
# Function to get the most recent task file
def get_latest_task_file():
# Check first in uploaded_tasks directory
os.makedirs("uploaded_tasks", exist_ok=True)
uploaded_tasks = [f for f in os.listdir("uploaded_tasks") if f.endswith(".json")]
if uploaded_tasks:
# Sort by modification time, newest first
uploaded_tasks.sort(key=lambda x: os.path.getmtime(os.path.join("uploaded_tasks", x)), reverse=True)
return os.path.join("uploaded_tasks", uploaded_tasks[0])
# Fall back to default example
return "AskUbuntuDupQuestions_human_eval.json"
# Load the task file
task_file = get_latest_task_file()
try:
with open(task_file, "r") as f:
task_data = json.load(f)
# Show which task is currently loaded
gr.Markdown(f"**Current Task: {task_data['task_name']}** ({len(task_data['samples'])} samples)")
# Display the interface
reranking_demo = create_reranking_interface(task_data)
except Exception as e:
gr.Markdown(f"**Error loading task: {str(e)}**")
gr.Markdown("Please upload a valid task file in the 'Upload & Evaluate' tab.")
with gr.TabItem("Upload & Evaluate"):
gr.Markdown("""
## Upload Your Own Task File
If you have a prepared task file, you can upload it here to create an evaluation interface.
""")
with gr.Row():
with gr.Column():
file_input = gr.File(label="Upload a task file (JSON)")
load_btn = gr.Button("Load Task")
message = gr.Textbox(label="Status", interactive=False)
# Add task list for previously uploaded tasks
gr.Markdown("### Previous Uploads")
# Function to list existing task files in the tasks directory
def list_task_files():
os.makedirs("uploaded_tasks", exist_ok=True)
tasks = [f for f in os.listdir("uploaded_tasks") if f.endswith(".json")]
if not tasks:
return "No task files uploaded yet."
return "\n".join([f"- [{t}](javascript:selectTask('{t}'))" for t in tasks])
task_list = gr.Markdown(list_task_files())
refresh_btn = gr.Button("Refresh List")
# Add results management section
gr.Markdown("### Results Management")
# Function to list existing result files
def list_result_files():
results = [f for f in os.listdir(".") if f.endswith("_human_results.json")]
if not results:
return "No result files available yet."
result_links = []
for r in results:
# Calculate completion stats
try:
with open(r, "r") as f:
result_data = json.load(f)
annotation_count = len(result_data.get("annotations", []))
task_name = result_data.get("task_name", "Unknown")
result_links.append(f"- {r} ({annotation_count} annotations for {task_name})")
except:
result_links.append(f"- {r}")
return "\n".join(result_links)
results_list = gr.Markdown(list_result_files())
download_results_btn = gr.Button("Download Results")
# Right side - will contain the actual interface
with gr.Column():
task_container = gr.HTML()
# Handle file upload and storage
def handle_upload(file):
if not file:
return "Please upload a task file", task_list.value, task_container.value
try:
# Create directory if it doesn't exist
os.makedirs("uploaded_tasks", exist_ok=True)
# Read the uploaded file
with open(file.name, "r") as f:
task_data = json.load(f)
# Validate task format
if "task_name" not in task_data or "samples" not in task_data:
return "Invalid task file format. Must contain 'task_name' and 'samples' fields.", task_list.value, task_container.value
# Save to a consistent location
task_filename = f"uploaded_tasks/{task_data['task_name']}_task.json"
with open(task_filename, "w") as f:
json.dump(task_data, f, indent=2)
# Instead of trying to create the interface here,
# we'll return a message with instructions
return f"Task '{task_data['task_name']}' uploaded successfully with {len(task_data['samples'])} samples. Please refresh the app and use the Demo tab to evaluate it.", list_task_files(), f"""
<div style="padding: 20px; background-color: #f0f0f0; border-radius: 10px;">
<h3>Task uploaded successfully!</h3>
<p>Task Name: {task_data['task_name']}</p>
<p>Samples: {len(task_data['samples'])}</p>
<p>To evaluate this task:</p>
<ol>
<li>Refresh the app</li>
<li>The Demo tab will now use your uploaded task</li>
<li>Complete your evaluations</li>
<li>Results will be saved as {task_data['task_name']}_human_results.json</li>
</ol>
</div>
"""
except Exception as e:
return f"Error processing task file: {str(e)}", task_list.value, task_container.value
# Function to prepare results for download
def prepare_results_for_download():
results = [f for f in os.listdir(".") if f.endswith("_human_results.json")]
if not results:
return None
# Create a zip file with all results
import zipfile
zip_path = "mteb_human_eval_results.zip"
with zipfile.ZipFile(zip_path, 'w') as zipf:
for r in results:
zipf.write(r)
return zip_path
# Connect events
load_btn.click(handle_upload, inputs=[file_input], outputs=[message, task_list, task_container])
refresh_btn.click(list_task_files, outputs=[task_list])
download_results_btn.click(prepare_results_for_download, outputs=[gr.File(label="Download Results")])
with gr.TabItem("Results Management"):
gr.Markdown("""
## Manage Evaluation Results
View, download, and analyze your evaluation results.
""")
# Function to load and display result stats
def get_result_stats():
results = [f for f in os.listdir(".") if f.endswith("_human_results.json")]
if not results:
return "No result files available yet."
stats = []
for r in results:
try:
with open(r, "r") as f:
result_data = json.load(f)
task_name = result_data.get("task_name", "Unknown")
annotations = result_data.get("annotations", [])
annotation_count = len(annotations)
# Calculate completion percentage
sample_ids = set(a.get("sample_id") for a in annotations)
# Try to get the total sample count from the corresponding task file
total_samples = 0
task_file = f"uploaded_tasks/{task_name}_task.json"
if os.path.exists(task_file):
with open(task_file, "r") as f:
task_data = json.load(f)
total_samples = len(task_data.get("samples", []))
completion = f"{len(sample_ids)}/{total_samples}" if total_samples else f"{len(sample_ids)} samples"
stats.append(f"### {task_name}\n- Annotations: {annotation_count}\n- Completion: {completion}\n- File: {r}")
except Exception as e:
stats.append(f"### {r}\n- Error loading results: {str(e)}")
return "\n\n".join(stats)
result_stats = gr.Markdown(get_result_stats())
refresh_results_btn = gr.Button("Refresh Results")
# Add download options
with gr.Row():
with gr.Column():
download_all_btn = gr.Button("Download All Results (ZIP)")
with gr.Column():
result_select = gr.Dropdown(choices=[f for f in os.listdir(".") if f.endswith("_human_results.json")], label="Select Result to Download", value=None)
download_selected_btn = gr.Button("Download Selected")
# Add results visualization placeholder
gr.Markdown("### Results Visualization")
gr.Markdown("*Visualization features will be added in a future update.*")
# Connect events
refresh_results_btn.click(get_result_stats, outputs=[result_stats])
# Function to prepare all results for download as ZIP
def prepare_all_results():
import zipfile
zip_path = "mteb_human_eval_results.zip"
with zipfile.ZipFile(zip_path, 'w') as zipf:
for r in [f for f in os.listdir(".") if f.endswith("_human_results.json")]:
zipf.write(r)
return zip_path
# Function to return a single result file
def get_selected_result(filename):
if not filename:
return None
if os.path.exists(filename):
return filename
return None
# Update dropdown when refreshing results
def update_result_dropdown():
return gr.Dropdown.update(choices=[f for f in os.listdir(".") if f.endswith("_human_results.json")])
refresh_results_btn.click(update_result_dropdown, outputs=[result_select])
download_all_btn.click(prepare_all_results, outputs=[gr.File(label="Download All Results")])
download_selected_btn.click(get_selected_result, inputs=[result_select], outputs=[gr.File(label="Download Selected Result")])
if __name__ == "__main__":
demo.launch()
|