Spaces:
Sleeping
Sleeping
File size: 21,258 Bytes
06f87ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 |
import gradio as gr
import json
import os
from pathlib import Path
def create_reranking_interface(task_data):
"""Create a Gradio interface for reranking evaluation."""
samples = task_data["samples"]
results = {"task_name": task_data["task_name"], "task_type": "reranking", "annotations": []}
completed_samples = {s["id"]: False for s in samples}
def save_ranking(rankings, sample_id):
"""Save the current set of rankings."""
# Check if all documents have rankings
all_ranked = all(r is not None and r != "" for r in rankings)
if not all_ranked:
return "β οΈ Please assign a rank to all documents before submitting", f"Progress: {sum(completed_samples.values())}/{len(samples)}"
# Convert rankings to integers
processed_rankings = [int(r) for r in rankings]
# Check for duplicate rankings
if len(set(processed_rankings)) != len(processed_rankings):
return "β οΈ Each document must have a unique rank. Please review your rankings.", f"Progress: {sum(completed_samples.values())}/{len(samples)}"
# Store this annotation
existing_idx = next((i for i, a in enumerate(results["annotations"]) if a["sample_id"] == sample_id), None)
if existing_idx is not None:
results["annotations"][existing_idx] = {
"sample_id": sample_id,
"rankings": processed_rankings
}
else:
results["annotations"].append({
"sample_id": sample_id,
"rankings": processed_rankings
})
completed_samples[sample_id] = True
success_msg = f"β
Rankings for query '{sample_id}' successfully saved!"
progress = f"Progress: {sum(completed_samples.values())}/{len(samples)}"
# Auto-save results after each submission
output_path = f"{task_data['task_name']}_human_results.json"
with open(output_path, "w") as f:
json.dump(results, f, indent=2)
return success_msg, progress
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown(f"# {task_data['task_name']} - Human Reranking Evaluation")
with gr.Accordion("Instructions", open=True):
gr.Markdown("""
## Task Instructions
{instructions}
### How to use this interface:
1. Read the query at the top
2. Review each document carefully
3. Assign a rank to each document (1 = most relevant, higher numbers = less relevant)
4. Each document must have a unique rank
5. Click "Submit Rankings" when you're done with the current query
6. Use "Previous" and "Next" to navigate between queries
7. Click "Save All Results" periodically to ensure your work is saved
""".format(instructions=task_data["instructions"]))
current_sample_id = gr.State(value=samples[0]["id"])
with gr.Row():
progress_text = gr.Textbox(label="Progress", value=f"Progress: 0/{len(samples)}", interactive=False)
status_box = gr.Textbox(label="Status", value="Ready to start evaluation", interactive=False)
with gr.Group():
gr.Markdown("## Query:")
query_text = gr.Textbox(value=samples[0]["query"], label="", interactive=False)
gr.Markdown("## Documents to Rank:")
# Create document displays and ranking dropdowns in synchronized pairs
doc_containers = []
ranking_dropdowns = []
with gr.Column():
for i, doc in enumerate(samples[0]["candidates"]):
with gr.Row():
doc_box = gr.Textbox(
value=doc,
label=f"Document {i+1}",
interactive=False
)
dropdown = gr.Dropdown(
choices=[str(j) for j in range(1, len(samples[0]["candidates"])+1)],
label=f"Rank",
value=""
)
doc_containers.append(doc_box)
ranking_dropdowns.append(dropdown)
with gr.Row():
prev_btn = gr.Button("β Previous Query", size="sm")
submit_btn = gr.Button("Submit Rankings", size="lg", variant="primary")
next_btn = gr.Button("Next Query β", size="sm")
save_btn = gr.Button("πΎ Save All Results", variant="secondary")
def load_sample(sample_id):
"""Load a specific sample into the interface."""
sample = next((s for s in samples if s["id"] == sample_id), None)
if not sample:
return [query_text.value] + [d.value for d in doc_containers] + [""] * len(ranking_dropdowns) + [current_sample_id.value, progress_text.value, status_box.value]
# Update query
new_query = sample["query"]
# Update documents
new_docs = []
for i, doc in enumerate(sample["candidates"]):
if i < len(doc_containers):
new_docs.append(doc)
# Initialize rankings
new_rankings = [""] * len(ranking_dropdowns)
# Check if this sample has already been annotated
existing_annotation = next((a for a in results["annotations"] if a["sample_id"] == sample_id), None)
if existing_annotation:
# Restore previous rankings
for i, rank in enumerate(existing_annotation["rankings"]):
if i < len(new_rankings) and rank is not None:
new_rankings[i] = str(rank)
# Update progress
current_idx = samples.index(sample)
new_progress = f"Progress: {sum(completed_samples.values())}/{len(samples)}"
new_status = f"Viewing query {current_idx + 1} of {len(samples)}"
if completed_samples[sample_id]:
new_status += " (already completed)"
return [new_query] + new_docs + new_rankings + [sample["id"], new_progress, new_status]
def next_sample(current_id):
"""Load the next sample."""
current_sample = next((s for s in samples if s["id"] == current_id), None)
if not current_sample:
return current_id
current_idx = samples.index(current_sample)
if current_idx < len(samples) - 1:
next_sample = samples[current_idx + 1]
return next_sample["id"]
return current_id
def prev_sample(current_id):
"""Load the previous sample."""
current_sample = next((s for s in samples if s["id"] == current_id), None)
if not current_sample:
return current_id
current_idx = samples.index(current_sample)
if current_idx > 0:
prev_sample = samples[current_idx - 1]
return prev_sample["id"]
return current_id
def save_results():
"""Save all collected results to a file."""
output_path = f"{task_data['task_name']}_human_results.json"
with open(output_path, "w") as f:
json.dump(results, f, indent=2)
return f"β
Results saved to {output_path} ({len(results['annotations'])} annotations)"
# Connect events
submit_btn.click(
save_ranking,
inputs=ranking_dropdowns + [current_sample_id],
outputs=[status_box, progress_text]
)
next_btn.click(
next_sample,
inputs=[current_sample_id],
outputs=[current_sample_id]
).then(
load_sample,
inputs=[current_sample_id],
outputs=[query_text] + doc_containers + ranking_dropdowns + [current_sample_id, progress_text, status_box]
)
prev_btn.click(
prev_sample,
inputs=[current_sample_id],
outputs=[current_sample_id]
).then(
load_sample,
inputs=[current_sample_id],
outputs=[query_text] + doc_containers + ranking_dropdowns + [current_sample_id, progress_text, status_box]
)
save_btn.click(save_results, outputs=[status_box])
return demo
# Main app with file upload capability
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# MTEB Human Evaluation Demo")
with gr.Tabs():
with gr.TabItem("Demo"):
gr.Markdown("""
## MTEB Human Evaluation Interface
This interface allows you to evaluate the relevance of documents for reranking tasks.
""")
# Function to get the most recent task file
def get_latest_task_file():
# Check first in uploaded_tasks directory
os.makedirs("uploaded_tasks", exist_ok=True)
uploaded_tasks = [f for f in os.listdir("uploaded_tasks") if f.endswith(".json")]
if uploaded_tasks:
# Sort by modification time, newest first
uploaded_tasks.sort(key=lambda x: os.path.getmtime(os.path.join("uploaded_tasks", x)), reverse=True)
return os.path.join("uploaded_tasks", uploaded_tasks[0])
# Fall back to default example
return "AskUbuntuDupQuestions_human_eval.json"
# Load the task file
task_file = get_latest_task_file()
try:
with open(task_file, "r") as f:
task_data = json.load(f)
# Show which task is currently loaded
gr.Markdown(f"**Current Task: {task_data['task_name']}** ({len(task_data['samples'])} samples)")
# Display the interface
reranking_demo = create_reranking_interface(task_data)
except Exception as e:
gr.Markdown(f"**Error loading task: {str(e)}**")
gr.Markdown("Please upload a valid task file in the 'Upload & Evaluate' tab.")
with gr.TabItem("Upload & Evaluate"):
gr.Markdown("""
## Upload Your Own Task File
If you have a prepared task file, you can upload it here to create an evaluation interface.
""")
with gr.Row():
with gr.Column(scale=1):
file_input = gr.File(label="Upload a task file (JSON)")
load_btn = gr.Button("Load Task")
message = gr.Textbox(label="Status", interactive=False)
# Add task list for previously uploaded tasks
gr.Markdown("### Previous Uploads")
# Function to list existing task files in the tasks directory
def list_task_files():
os.makedirs("uploaded_tasks", exist_ok=True)
tasks = [f for f in os.listdir("uploaded_tasks") if f.endswith(".json")]
if not tasks:
return "No task files uploaded yet."
return "\n".join([f"- [{t}](javascript:selectTask('{t}'))" for t in tasks])
task_list = gr.Markdown(list_task_files())
refresh_btn = gr.Button("Refresh List")
# Add results management section
gr.Markdown("### Results Management")
# Function to list existing result files
def list_result_files():
results = [f for f in os.listdir(".") if f.endswith("_human_results.json")]
if not results:
return "No result files available yet."
result_links = []
for r in results:
# Calculate completion stats
try:
with open(r, "r") as f:
result_data = json.load(f)
annotation_count = len(result_data.get("annotations", []))
task_name = result_data.get("task_name", "Unknown")
result_links.append(f"- {r} ({annotation_count} annotations for {task_name})")
except:
result_links.append(f"- {r}")
return "\n".join(result_links)
results_list = gr.Markdown(list_result_files())
download_results_btn = gr.Button("Download Results")
# Right side - will contain the actual interface
with gr.Column(scale=2):
task_container = gr.HTML()
# Handle file upload and storage
def handle_upload(file):
if not file:
return "Please upload a task file", task_list.value, task_container.value
try:
# Create directory if it doesn't exist
os.makedirs("uploaded_tasks", exist_ok=True)
# Read the uploaded file
with open(file.name, "r") as f:
task_data = json.load(f)
# Validate task format
if "task_name" not in task_data or "samples" not in task_data:
return "Invalid task file format. Must contain 'task_name' and 'samples' fields.", task_list.value, task_container.value
# Save to a consistent location
task_filename = f"uploaded_tasks/{task_data['task_name']}_task.json"
with open(task_filename, "w") as f:
json.dump(task_data, f, indent=2)
# Instead of trying to create the interface here,
# we'll return a message with instructions
return f"Task '{task_data['task_name']}' uploaded successfully with {len(task_data['samples'])} samples. Please refresh the app and use the Demo tab to evaluate it.", list_task_files(), f"""
<div style="padding: 20px; background-color: #f0f0f0; border-radius: 10px;">
<h3>Task uploaded successfully!</h3>
<p>Task Name: {task_data['task_name']}</p>
<p>Samples: {len(task_data['samples'])}</p>
<p>To evaluate this task:</p>
<ol>
<li>Refresh the app</li>
<li>The Demo tab will now use your uploaded task</li>
<li>Complete your evaluations</li>
<li>Results will be saved as {task_data['task_name']}_human_results.json</li>
</ol>
</div>
"""
except Exception as e:
return f"Error processing task file: {str(e)}", task_list.value, task_container.value
# Function to prepare results for download
def prepare_results_for_download():
results = [f for f in os.listdir(".") if f.endswith("_human_results.json")]
if not results:
return None
# Create a zip file with all results
import zipfile
zip_path = "mteb_human_eval_results.zip"
with zipfile.ZipFile(zip_path, 'w') as zipf:
for r in results:
zipf.write(r)
return zip_path
# Connect events
load_btn.click(handle_upload, inputs=[file_input], outputs=[message, task_list, task_container])
refresh_btn.click(list_task_files, outputs=[task_list])
download_results_btn.click(prepare_results_for_download, outputs=[gr.File(label="Download Results")])
with gr.TabItem("Results Management"):
gr.Markdown("""
## Manage Evaluation Results
View, download, and analyze your evaluation results.
""")
# Function to load and display result stats
def get_result_stats():
results = [f for f in os.listdir(".") if f.endswith("_human_results.json")]
if not results:
return "No result files available yet."
stats = []
for r in results:
try:
with open(r, "r") as f:
result_data = json.load(f)
task_name = result_data.get("task_name", "Unknown")
annotations = result_data.get("annotations", [])
annotation_count = len(annotations)
# Calculate completion percentage
sample_ids = set(a.get("sample_id") for a in annotations)
# Try to get the total sample count from the corresponding task file
total_samples = 0
task_file = f"uploaded_tasks/{task_name}_task.json"
if os.path.exists(task_file):
with open(task_file, "r") as f:
task_data = json.load(f)
total_samples = len(task_data.get("samples", []))
completion = f"{len(sample_ids)}/{total_samples}" if total_samples else f"{len(sample_ids)} samples"
stats.append(f"### {task_name}\n- Annotations: {annotation_count}\n- Completion: {completion}\n- File: {r}")
except Exception as e:
stats.append(f"### {r}\n- Error loading results: {str(e)}")
return "\n\n".join(stats)
result_stats = gr.Markdown(get_result_stats())
refresh_results_btn = gr.Button("Refresh Results")
# Add download options
with gr.Row():
download_all_btn = gr.Button("Download All Results (ZIP)")
result_select = gr.Dropdown(choices=[f for f in os.listdir(".") if f.endswith("_human_results.json")], label="Select Result to Download")
download_selected_btn = gr.Button("Download Selected")
# Add results visualization placeholder
gr.Markdown("### Results Visualization")
gr.Markdown("*Visualization features will be added in a future update.*")
# Connect events
refresh_results_btn.click(get_result_stats, outputs=[result_stats])
# Function to prepare all results for download as ZIP
def prepare_all_results():
import zipfile
zip_path = "mteb_human_eval_results.zip"
with zipfile.ZipFile(zip_path, 'w') as zipf:
for r in [f for f in os.listdir(".") if f.endswith("_human_results.json")]:
zipf.write(r)
return zip_path
# Function to return a single result file
def get_selected_result(filename):
if not filename:
return None
if os.path.exists(filename):
return filename
return None
# Update dropdown when refreshing results
def update_result_dropdown():
return gr.Dropdown.update(choices=[f for f in os.listdir(".") if f.endswith("_human_results.json")])
refresh_results_btn.click(update_result_dropdown, outputs=[result_select])
download_all_btn.click(prepare_all_results, outputs=[gr.File(label="Download All Results")])
download_selected_btn.click(get_selected_result, inputs=[result_select], outputs=[gr.File(label="Download Selected Result")])
if __name__ == "__main__":
demo.launch()
|