Spaces:
Sleeping
Sleeping
updated
Browse files
agent.py
CHANGED
@@ -1,25 +1,74 @@
|
|
|
|
1 |
import os
|
2 |
from dotenv import load_dotenv
|
3 |
from langgraph.graph import START, StateGraph, MessagesState
|
4 |
from langgraph.prebuilt import tools_condition
|
5 |
from langgraph.prebuilt import ToolNode
|
6 |
from langchain_google_genai import ChatGoogleGenerativeAI
|
7 |
-
from
|
8 |
-
|
9 |
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
|
10 |
from langchain_community.tools.tavily_search import TavilySearchResults
|
11 |
from langchain_community.document_loaders import WikipediaLoader
|
12 |
from langchain_community.document_loaders import ArxivLoader
|
|
|
13 |
from langchain_core.messages import SystemMessage, HumanMessage
|
14 |
from langchain_core.tools import tool
|
15 |
from langchain.tools.retriever import create_retriever_tool
|
16 |
-
from
|
17 |
-
from langchain_core.messages import SystemMessage, HumanMessage
|
18 |
-
from langchain.tools.retriever import create_retriever_tool
|
19 |
-
|
20 |
|
21 |
load_dotenv()
|
22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
@tool
|
24 |
def wiki_search(query: str) -> str:
|
25 |
"""Search Wikipedia for a query and return maximum 2 results.
|
@@ -64,38 +113,43 @@ def arvix_search(query: str) -> str:
|
|
64 |
|
65 |
|
66 |
|
67 |
-
|
68 |
# load the system prompt from the file
|
69 |
with open("system_prompt.txt", "r", encoding="utf-8") as f:
|
70 |
system_prompt = f.read()
|
71 |
|
|
|
72 |
sys_msg = SystemMessage(content=system_prompt)
|
73 |
|
|
|
74 |
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") # dim=768
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
|
|
|
|
|
|
80 |
)
|
81 |
-
|
82 |
-
|
83 |
-
# Assign the result to a new variable name, like 'question_retriever_tool'
|
84 |
-
question_retriever_tool = create_retriever_tool(
|
85 |
retriever=vector_store.as_retriever(),
|
86 |
-
name="
|
87 |
description="A tool to retrieve similar questions from a vector store.",
|
88 |
)
|
89 |
|
|
|
|
|
90 |
tools = [
|
|
|
|
|
|
|
|
|
|
|
91 |
wiki_search,
|
92 |
web_search,
|
93 |
arvix_search,
|
94 |
-
question_retriever_tool,
|
95 |
]
|
96 |
|
97 |
-
|
98 |
-
|
99 |
# Build graph function
|
100 |
def build_graph(provider: str = "groq"):
|
101 |
"""Build the graph"""
|
@@ -103,9 +157,9 @@ def build_graph(provider: str = "groq"):
|
|
103 |
if provider == "google":
|
104 |
# Google Gemini
|
105 |
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
|
106 |
-
elif provider == "
|
107 |
-
|
108 |
-
llm =
|
109 |
elif provider == "huggingface":
|
110 |
# TODO: Add huggingface endpoint
|
111 |
llm = ChatHuggingFace(
|
@@ -151,7 +205,7 @@ def build_graph(provider: str = "groq"):
|
|
151 |
if __name__ == "__main__":
|
152 |
question = "When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?"
|
153 |
# Build the graph
|
154 |
-
graph = build_graph(provider="
|
155 |
# Run the graph
|
156 |
messages = [HumanMessage(content=question)]
|
157 |
messages = graph.invoke({"messages": messages})
|
|
|
1 |
+
"""LangGraph Agent"""
|
2 |
import os
|
3 |
from dotenv import load_dotenv
|
4 |
from langgraph.graph import START, StateGraph, MessagesState
|
5 |
from langgraph.prebuilt import tools_condition
|
6 |
from langgraph.prebuilt import ToolNode
|
7 |
from langchain_google_genai import ChatGoogleGenerativeAI
|
8 |
+
from langchain_groq import ChatGroq
|
|
|
9 |
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
|
10 |
from langchain_community.tools.tavily_search import TavilySearchResults
|
11 |
from langchain_community.document_loaders import WikipediaLoader
|
12 |
from langchain_community.document_loaders import ArxivLoader
|
13 |
+
from langchain_community.vectorstores import SupabaseVectorStore
|
14 |
from langchain_core.messages import SystemMessage, HumanMessage
|
15 |
from langchain_core.tools import tool
|
16 |
from langchain.tools.retriever import create_retriever_tool
|
17 |
+
from supabase.client import Client, create_client
|
|
|
|
|
|
|
18 |
|
19 |
load_dotenv()
|
20 |
|
21 |
+
@tool
|
22 |
+
def multiply(a: int, b: int) -> int:
|
23 |
+
"""Multiply two numbers.
|
24 |
+
Args:
|
25 |
+
a: first int
|
26 |
+
b: second int
|
27 |
+
"""
|
28 |
+
return a * b
|
29 |
+
|
30 |
+
@tool
|
31 |
+
def add(a: int, b: int) -> int:
|
32 |
+
"""Add two numbers.
|
33 |
+
|
34 |
+
Args:
|
35 |
+
a: first int
|
36 |
+
b: second int
|
37 |
+
"""
|
38 |
+
return a + b
|
39 |
+
|
40 |
+
@tool
|
41 |
+
def subtract(a: int, b: int) -> int:
|
42 |
+
"""Subtract two numbers.
|
43 |
+
|
44 |
+
Args:
|
45 |
+
a: first int
|
46 |
+
b: second int
|
47 |
+
"""
|
48 |
+
return a - b
|
49 |
+
|
50 |
+
@tool
|
51 |
+
def divide(a: int, b: int) -> int:
|
52 |
+
"""Divide two numbers.
|
53 |
+
|
54 |
+
Args:
|
55 |
+
a: first int
|
56 |
+
b: second int
|
57 |
+
"""
|
58 |
+
if b == 0:
|
59 |
+
raise ValueError("Cannot divide by zero.")
|
60 |
+
return a / b
|
61 |
+
|
62 |
+
@tool
|
63 |
+
def modulus(a: int, b: int) -> int:
|
64 |
+
"""Get the modulus of two numbers.
|
65 |
+
|
66 |
+
Args:
|
67 |
+
a: first int
|
68 |
+
b: second int
|
69 |
+
"""
|
70 |
+
return a % b
|
71 |
+
|
72 |
@tool
|
73 |
def wiki_search(query: str) -> str:
|
74 |
"""Search Wikipedia for a query and return maximum 2 results.
|
|
|
113 |
|
114 |
|
115 |
|
|
|
116 |
# load the system prompt from the file
|
117 |
with open("system_prompt.txt", "r", encoding="utf-8") as f:
|
118 |
system_prompt = f.read()
|
119 |
|
120 |
+
# System message
|
121 |
sys_msg = SystemMessage(content=system_prompt)
|
122 |
|
123 |
+
# build a retriever
|
124 |
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") # dim=768
|
125 |
+
supabase: Client = create_client(
|
126 |
+
os.environ.get("SUPABASE_URL"),
|
127 |
+
os.environ.get("SUPABASE_SERVICE_KEY"))
|
128 |
+
vector_store = SupabaseVectorStore(
|
129 |
+
client=supabase,
|
130 |
+
embedding= embeddings,
|
131 |
+
table_name="documents",
|
132 |
+
query_name="match_documents_langchain",
|
133 |
)
|
134 |
+
create_retriever_tool = create_retriever_tool(
|
|
|
|
|
|
|
135 |
retriever=vector_store.as_retriever(),
|
136 |
+
name="Question Search",
|
137 |
description="A tool to retrieve similar questions from a vector store.",
|
138 |
)
|
139 |
|
140 |
+
|
141 |
+
|
142 |
tools = [
|
143 |
+
multiply,
|
144 |
+
add,
|
145 |
+
subtract,
|
146 |
+
divide,
|
147 |
+
modulus,
|
148 |
wiki_search,
|
149 |
web_search,
|
150 |
arvix_search,
|
|
|
151 |
]
|
152 |
|
|
|
|
|
153 |
# Build graph function
|
154 |
def build_graph(provider: str = "groq"):
|
155 |
"""Build the graph"""
|
|
|
157 |
if provider == "google":
|
158 |
# Google Gemini
|
159 |
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
|
160 |
+
elif provider == "groq":
|
161 |
+
# Groq https://console.groq.com/docs/models
|
162 |
+
llm = ChatGroq(model="qwen-qwq-32b", temperature=0) # optional : qwen-qwq-32b gemma2-9b-it
|
163 |
elif provider == "huggingface":
|
164 |
# TODO: Add huggingface endpoint
|
165 |
llm = ChatHuggingFace(
|
|
|
205 |
if __name__ == "__main__":
|
206 |
question = "When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?"
|
207 |
# Build the graph
|
208 |
+
graph = build_graph(provider="groq")
|
209 |
# Run the graph
|
210 |
messages = [HumanMessage(content=question)]
|
211 |
messages = graph.invoke({"messages": messages})
|