import gradio as gr from huggingface_hub import InferenceClient import os import time import asyncio from pipeline import PromptEnhancer """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ # client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") def advancedPromptPipeline(InputPrompt): model="gpt-4o-mini" if model == "gpt-4o": i_cost=5/10**6 o_cost=15/10**6 elif model == "gpt-4o-mini": i_cost=0.15/10**6 o_cost=0.6/10**6 enhancer = PromptEnhancer(model) start_time = time.time() advanced_prompt = enhancer.enhance_prompt(input_prompt, perform_eval=False) elapsed_time = time.time() - start_time yield advanced_prompt["advanced_prompt"] #return { #"model": model, #"elapsed_time": elapsed_time, #"prompt_tokens": enhancer.prompt_tokens, #"completion_tokens": enhancer.completion_tokens, #"approximate_cost": (enhancer.prompt_tokens*i_cost)+(enhancer.completion_tokens*o_cost), #"inout_prompt": input_prompt, #"advanced_prompt": advanced_prompt["advanced_prompt"], #} def respond( message, #history: list[tuple[str, str]], #system_message, #max_tokens, #temperature, #top_p, ): #messages = [{"role": "system", "content": system_message}] #for val in history: # if val[0]: # messages.append({"role": "user", "content": val[0]}) # if val[1]: # messages.append({"role": "assistant", "content": val[1]}) # #messages.append({"role": "user", "content": message}) messages = [] response = "" advancedPromptPipeline(InputPrompt) #for message in client.chat_completion( # messages, # max_tokens=max_tokens, # stream=True, # temperature=temperature, # top_p=top_p, #): # token = message.choices[0].delta.content # response += token # yield response """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( advancedPromptPipeline, #respond, #additional_inputs=[ #gr.Textbox(value="You are a friendly Chatbot.", label="System message"), #gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), #gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), #gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", # ), #], ) if __name__ == "__main__": demo.launch()