Spaces:
Sleeping
Sleeping
import streamlit as st | |
from gradio_client import Client | |
# Constants | |
TITLE = "Llama2 70B Chatbot" | |
DESCRIPTION = """ | |
This Space demonstrates model [Llama-2-70b-chat-hf](https://huggingface.co/meta-llama/Llama-2-70b-chat-hf) by Meta, | |
a Llama 2 model with 70B parameters fine-tuned for chat instructions. | |
""" | |
# Initialize client | |
client = Client("https://ysharma-explore-llamav2-with-tgi.hf.space/") | |
with st.sidebar: | |
system_promptSide = st.text_input("Optional system prompt:") | |
temperatureSide = st.slider("Temperature", min_value=0.0, max_value=1.0, value=0.9, step=0.05) | |
max_new_tokensSide = st.slider("Max new tokens", min_value=0.0, max_value=4096.0, value=4096.0, step=64.0) | |
ToppSide = st.slider("Top-p (nucleus sampling)", min_value=0.0, max_value=1.0, value=0.6, step=0.05) | |
RepetitionpenaltySide = st.slider("Repetition penalty", min_value=0.0, max_value=2.0, value=1.2, step=0.05) | |
# Prediction function | |
def predict(message, system_prompt, temperature, max_new_tokens,Topp,Repetitionpenalty): | |
with st.status("Requesting LLama-2"): | |
st.write("Requesting API") | |
response = client.predict( | |
message, # str in 'Message' Textbox component | |
system_prompt, # str in 'Optional system prompt' Textbox component | |
temperature, # int | float (numeric value between 0.0 and 1.0) | |
max_new_tokens, # int | float (numeric value between 0 and 4096) | |
Topp, # int | float (numeric value between 0.0 and 1) | |
Repetitionpenalty, # int | float (numeric value between 1.0 and 2.0) | |
api_name="/chat" | |
) | |
st.write("Done") | |
return response | |
# Streamlit UI | |
st.title(TITLE) | |
st.write(DESCRIPTION) | |
if "messages" not in st.session_state: | |
st.session_state.messages = [] | |
# Display chat messages from history on app rerun | |
for message in st.session_state.messages: | |
with st.chat_message(message["role"]): | |
st.markdown(message["content"]) | |
# React to user input | |
if prompt := st.chat_input("Ask LLama-2-70b anything..."): | |
# Display user message in chat message container | |
st.chat_message("human",avatar = "π§βπ»").markdown(prompt) | |
# Add user message to chat history | |
st.session_state.messages.append({"role": "human", "content": prompt}) | |
response = predict(prompt,system_promptSide,temperatureSide,max_new_tokensSide,ToppSide,RepetitionpenaltySide) | |
# Display assistant response in chat message container | |
with st.chat_message("assistant", avatar='π¦'): | |
st.markdown(response) | |
# Add assistant response to chat history | |
st.session_state.messages.append({"role": "assistant", "content": response}) | |