File size: 4,636 Bytes
86b946a
 
9030e5b
bfaeb19
 
 
9030e5b
 
a6532a3
 
 
 
 
 
 
 
 
 
 
9030e5b
 
a6532a3
 
 
 
 
 
 
 
 
 
 
9030e5b
a6532a3
9030e5b
 
 
a6532a3
 
 
9030e5b
a6532a3
 
 
 
 
 
9030e5b
 
 
 
 
 
 
 
a6532a3
 
 
2dfe1eb
1e3c563
2dfe1eb
 
 
a6d394e
9030e5b
a6532a3
 
 
 
9030e5b
 
 
 
cab6a89
 
 
a6532a3
 
 
 
 
 
9030e5b
cab6a89
9030e5b
a6532a3
9030e5b
a6532a3
 
 
9030e5b
a6532a3
9030e5b
 
a6532a3
 
 
9030e5b
a6532a3
 
 
9030e5b
a6532a3
d06f4eb
883b37e
f845a0a
9030e5b
 
 
a197dc7
883b37e
9030e5b
 
883b37e
e0d541d
9030e5b
3405778
a6d394e
9030e5b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import streamlit as st
from gradio_client import Client
from st_audiorec import st_audiorec
from gtts import gTTS
import os



# Constants
TITLE = "AgriTure"
DESCRIPTION = """
----
This Project demonstrates a model fine-tuned by Achyuth. This Model is named as "AgriTure". This Model helps the farmers and scientists to develop the art of agriculture and farming.
Hope this will be a Successful Project!!!
~Achyuth
----
"""

# Initialize client


with st.sidebar:
    system_promptSide = st.text_input("Optional system prompt:")
    temperatureSide = st.slider("Temperature", min_value=0.0, max_value=1.0, value=0.9, step=0.05)
    max_new_tokensSide = st.slider("Max new tokens", min_value=0.0, max_value=4096.0, value=4096.0, step=64.0)
    ToppSide = st.slider("Top-p (nucleus sampling)", min_value=0.0, max_value=1.0, value=0.6, step=0.05)
    RepetitionpenaltySide = st.slider("Repetition penalty", min_value=0.0, max_value=2.0, value=1.2, step=0.05)

whisper_client = Client("https://sanchit-gandhi-whisper-large-v2.hf.space/")


def transcribe(wav_path):
    
    return whisper_client.predict(
				wav_path,	# str (filepath or URL to file) in 'inputs' Audio component
				"transcribe",	# str in 'Task' Radio component
				api_name="/predict"
    )

# Prediction function
def predict(message, system_prompt='Your name is OpenGPT. You are developed by Achyuth. You need to mostly focus on giving information about future agriculture and advanced farming. Empower yourself farming future with cutting-edge technology and sustainable practices. You need to cultivate a greener and more productive. Your developer is studying in The Hyderabad Public School Kadapa.', temperature=0.7, max_new_tokens=4096,Topp=0.5,Repetitionpenalty=1.2):
    with st.status("Starting client"):
        client = Client("https://huggingface-projects-llama-2-7b-chat.hf.space/")
        st.write("Requesting Audio Transcriber")
    with st.status("Requesting AgriTure v1"):
        st.write("Requesting API")
        response = client.predict(
    			message,	# str in 'Message' Textbox component
                system_prompt,	# str in 'Optional system prompt' Textbox component
    			max_new_tokens,	# int | float (numeric value between 0 and 4096)
    			temperature,	# int | float (numeric value between 0.0 and 1.0)
    			Topp,	
                500,
    			Repetitionpenalty,	# int | float (numeric value between 1.0 and 2.0)
    			api_name="/chat"
        )
        st.write("Done")
        return response

# Function to convert text to speech
def text_to_speech(text, language='en', filename='output.mp3'):
    tts = gTTS(text=text, lang=language, slow=False)
    tts.save(filename)
    os.system(f'start {filename}')
    
# Streamlit UI
st.title(TITLE)
st.write(DESCRIPTION)





if "messages" not in st.session_state:
    st.session_state.messages = []

# Display chat messages from history on app rerun
for message in st.session_state.messages:
    with st.chat_message(message["role"], avatar=("πŸ§‘β€πŸ’»" if message["role"] == 'human' else 'πŸ¦™')):
        st.markdown(message["content"])

textinput = st.chat_input("Ask AgriTure anything...")
wav_audio_data = st_audiorec()

if wav_audio_data != None:
    with st.status("Transcribing audio..."):
        # save audio
        with open("audio.wav", "wb") as f:
            f.write(wav_audio_data)
        prompt = transcribe("audio.wav")
       
        st.write("Transcribed Given Audio βœ”")
        
    st.chat_message("human",avatar = "πŸ§‘β€πŸ’»").markdown(prompt)
    st.session_state.messages.append({"role": "human", "content": prompt})

    # transcribe audio
    response = predict(message= prompt)

    with st.chat_message("assistant", avatar='πŸ¦™'):
        st.markdown(response)
    # Add assistant response to chat history
    st.session_state.messages.append({"role": "assistant", "content": response})

# React to user input
if prompt := textinput:
    # Display user message in chat message container
    st.chat_message("human",avatar = "πŸ’¬: ").markdown(prompt)
    # Add user message to chat history
    st.session_state.messages.append({"role": "human", "content": prompt})

    response = predict(message=prompt)#, temperature= temperatureSide,max_new_tokens=max_new_tokensSide, Topp=ToppSide,Repetitionpenalty=RepetitionpenaltySide)
    # Display assistant response in chat message container
    with st.chat_message("assistant", avatar='πŸ¦™'):
        st.markdown(response)
    # Add assistant response to chat history
    st.session_state.messages.append({"role": "assistant", "content": response})

# Convert response to speech
text_to_speech(response)