Spaces:
Sleeping
Sleeping
File size: 4,636 Bytes
86b946a 9030e5b bfaeb19 9030e5b a6532a3 9030e5b a6532a3 9030e5b a6532a3 9030e5b a6532a3 9030e5b a6532a3 9030e5b a6532a3 2dfe1eb 1e3c563 2dfe1eb a6d394e 9030e5b a6532a3 9030e5b cab6a89 a6532a3 9030e5b cab6a89 9030e5b a6532a3 9030e5b a6532a3 9030e5b a6532a3 9030e5b a6532a3 9030e5b a6532a3 9030e5b a6532a3 d06f4eb 883b37e f845a0a 9030e5b a197dc7 883b37e 9030e5b 883b37e e0d541d 9030e5b 3405778 a6d394e 9030e5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 |
import streamlit as st
from gradio_client import Client
from st_audiorec import st_audiorec
from gtts import gTTS
import os
# Constants
TITLE = "AgriTure"
DESCRIPTION = """
----
This Project demonstrates a model fine-tuned by Achyuth. This Model is named as "AgriTure". This Model helps the farmers and scientists to develop the art of agriculture and farming.
Hope this will be a Successful Project!!!
~Achyuth
----
"""
# Initialize client
with st.sidebar:
system_promptSide = st.text_input("Optional system prompt:")
temperatureSide = st.slider("Temperature", min_value=0.0, max_value=1.0, value=0.9, step=0.05)
max_new_tokensSide = st.slider("Max new tokens", min_value=0.0, max_value=4096.0, value=4096.0, step=64.0)
ToppSide = st.slider("Top-p (nucleus sampling)", min_value=0.0, max_value=1.0, value=0.6, step=0.05)
RepetitionpenaltySide = st.slider("Repetition penalty", min_value=0.0, max_value=2.0, value=1.2, step=0.05)
whisper_client = Client("https://sanchit-gandhi-whisper-large-v2.hf.space/")
def transcribe(wav_path):
return whisper_client.predict(
wav_path, # str (filepath or URL to file) in 'inputs' Audio component
"transcribe", # str in 'Task' Radio component
api_name="/predict"
)
# Prediction function
def predict(message, system_prompt='Your name is OpenGPT. You are developed by Achyuth. You need to mostly focus on giving information about future agriculture and advanced farming. Empower yourself farming future with cutting-edge technology and sustainable practices. You need to cultivate a greener and more productive. Your developer is studying in The Hyderabad Public School Kadapa.', temperature=0.7, max_new_tokens=4096,Topp=0.5,Repetitionpenalty=1.2):
with st.status("Starting client"):
client = Client("https://huggingface-projects-llama-2-7b-chat.hf.space/")
st.write("Requesting Audio Transcriber")
with st.status("Requesting AgriTure v1"):
st.write("Requesting API")
response = client.predict(
message, # str in 'Message' Textbox component
system_prompt, # str in 'Optional system prompt' Textbox component
max_new_tokens, # int | float (numeric value between 0 and 4096)
temperature, # int | float (numeric value between 0.0 and 1.0)
Topp,
500,
Repetitionpenalty, # int | float (numeric value between 1.0 and 2.0)
api_name="/chat"
)
st.write("Done")
return response
# Function to convert text to speech
def text_to_speech(text, language='en', filename='output.mp3'):
tts = gTTS(text=text, lang=language, slow=False)
tts.save(filename)
os.system(f'start {filename}')
# Streamlit UI
st.title(TITLE)
st.write(DESCRIPTION)
if "messages" not in st.session_state:
st.session_state.messages = []
# Display chat messages from history on app rerun
for message in st.session_state.messages:
with st.chat_message(message["role"], avatar=("π§βπ»" if message["role"] == 'human' else 'π¦')):
st.markdown(message["content"])
textinput = st.chat_input("Ask AgriTure anything...")
wav_audio_data = st_audiorec()
if wav_audio_data != None:
with st.status("Transcribing audio..."):
# save audio
with open("audio.wav", "wb") as f:
f.write(wav_audio_data)
prompt = transcribe("audio.wav")
st.write("Transcribed Given Audio β")
st.chat_message("human",avatar = "π§βπ»").markdown(prompt)
st.session_state.messages.append({"role": "human", "content": prompt})
# transcribe audio
response = predict(message= prompt)
with st.chat_message("assistant", avatar='π¦'):
st.markdown(response)
# Add assistant response to chat history
st.session_state.messages.append({"role": "assistant", "content": response})
# React to user input
if prompt := textinput:
# Display user message in chat message container
st.chat_message("human",avatar = "π¬: ").markdown(prompt)
# Add user message to chat history
st.session_state.messages.append({"role": "human", "content": prompt})
response = predict(message=prompt)#, temperature= temperatureSide,max_new_tokens=max_new_tokensSide, Topp=ToppSide,Repetitionpenalty=RepetitionpenaltySide)
# Display assistant response in chat message container
with st.chat_message("assistant", avatar='π¦'):
st.markdown(response)
# Add assistant response to chat history
st.session_state.messages.append({"role": "assistant", "content": response})
# Convert response to speech
text_to_speech(response) |