File size: 4,630 Bytes
86b946a
 
43773a4
d968fe8
86b946a
 
27e28a2
a197dc7
27e28a2
 
 
 
 
86b946a
 
 
a197dc7
2e97054
c88185a
8713e85
c88185a
 
8713e85
 
a197dc7
dfb995a
2e97054
dfb995a
 
 
 
 
 
 
 
a197dc7
86b946a
2f6a203
a79aa4c
ca40e15
2f6a203
 
a197dc7
 
 
 
 
64e30b5
 
 
a197dc7
e50c4cb
019cdf0
 
 
86b946a
 
a197dc7
 
 
3405778
 
 
 
 
 
 
 
 
 
 
 
e50c4cb
f845a0a
 
dfb995a
124bb90
 
 
 
 
13ab025
2f6a203
13ab025
 
 
124bb90
dfb995a
124bb90
3405778
dfb995a
 
 
 
 
883b37e
f845a0a
883b37e
2f6a203
883b37e
a197dc7
883b37e
9d3d652
883b37e
 
e0d541d
883b37e
3405778
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import streamlit as st
from gradio_client import Client
from st_audiorec import st_audiorec


# Constants
TITLE = "AgriTure"
DESCRIPTION = """
-------------------
This Project demonstrates a model fine-tuned by Achyuth. This Model is named as "AgriTure". This Model helps the farmers and scientists to develop the art of agriculture and farming. This model helps you know about the latest advanced Farming Tips and Tricks. And helps you clarify your doubts regarding Agriculture.
Hope this will be a Successful Project!!!
~Achyuth
-------------------
"""

# Initialize client


with st.sidebar:
    system_promptSide = st.text_input("Optional system prompt:")
    temperatureSide = st.slider("Temperature", min_value=0.0, max_value=1.0, value=0.9, step=0.05)
    max_new_tokensSide = st.slider("Max new tokens", min_value=0.0, max_value=4096.0, value=4096.0, step=64.0)
    ToppSide = st.slider("Top-p (nucleus sampling)", min_value=0.0, max_value=1.0, value=0.6, step=0.05)
    RepetitionpenaltySide = st.slider("Repetition penalty", min_value=0.0, max_value=2.0, value=1.2, step=0.05)

whisper_client = Client("https://sanchit-gandhi-whisper-large-v2.hf.space/")


def transcribe(wav_path):
    
    return whisper_client.predict(
				wav_path,	# str (filepath or URL to file) in 'inputs' Audio component
				"transcribe",	# str in 'Task' Radio component
				api_name="/predict"
    )
    
# Prediction function
def predict(message, system_prompt='Your name is OpenGPT. You are developed by Achyuth. You need to mostly focus on giving information about future agriculture and advanced farming. Empower yourself farming future with cutting-edge technology and sustainable practices. You need to say about the latest advancements in agriculture, precision farming, and eco-friendly cultivation methods. You need to cultivate a greener and more productive. Your developer is studying in The Hyderabad Public School Kadapa.', temperature=0.7, max_new_tokens=4096,Topp=0.5,Repetitionpenalty=1.2):
    with st.status("Starting client"):
        client = Client("https://huggingface-projects-llama-2-7b-chat.hf.space/")
        st.write("Requesting Audio Transcriber")
    with st.status("Requesting AgriTure v1"):
        st.write("Requesting API")
        response = client.predict(
    			message,	# str in 'Message' Textbox component
                system_prompt,	# str in 'Optional system prompt' Textbox component
    			max_new_tokens,	# int | float (numeric value between 0 and 4096)
    			temperature,	# int | float (numeric value between 0.0 and 1.0)
    			Topp,	
                500,
    			Repetitionpenalty,	# int | float (numeric value between 1.0 and 2.0)
    			api_name="/chat"
        )
        st.write("Done")
        return response

# Streamlit UI
st.title(TITLE)
st.write(DESCRIPTION)





if "messages" not in st.session_state:
    st.session_state.messages = []

# Display chat messages from history on app rerun
for message in st.session_state.messages:
    with st.chat_message(message["role"], avatar=("πŸ§‘β€πŸ’»" if message["role"] == 'human' else 'πŸ¦™')):
        st.markdown(message["content"])

textinput = st.chat_input("Ask LLama-2-7b anything...")
wav_audio_data = st_audiorec()

if wav_audio_data != None:
    with st.status("Transcribing audio"):
        # save audio
        with open("audio.wav", "wb") as f:
            f.write(wav_audio_data)
        prompt = transcribe("audio.wav")
       
        st.write("Transcribed Given Audio")
        
    st.chat_message("human",avatar = "πŸ§‘β€πŸ’»").markdown(prompt)
    st.session_state.messages.append({"role": "human", "content": prompt})

    # transcribe audio
    response = predict(message= prompt)

    with st.chat_message("assistant", avatar='πŸ¦™'):
        st.markdown(response)
    # Add assistant response to chat history
    st.session_state.messages.append({"role": "assistant", "content": response})

# React to user input
if prompt := textinput:
    # Display user message in chat message container
    st.chat_message("human",avatar = "πŸ’¬: ").markdown(prompt)
    # Add user message to chat history
    st.session_state.messages.append({"role": "human", "content": prompt})

    response = predict(message=prompt)#, temperature= temperatureSide,max_new_tokens=max_new_tokensSide, Topp=ToppSide,Repetitionpenalty=RepetitionpenaltySide)
    # Display assistant response in chat message container
    with st.chat_message("assistant", avatar='πŸ¦™'):
        st.markdown(response)
    # Add assistant response to chat history
    st.session_state.messages.append({"role": "assistant", "content": response})