Spaces:
Sleeping
Sleeping
from transformers import AutoTokenizer, ElectraForSequenceClassification | |
import torch | |
import gradio as gr | |
import pickle | |
torch.autograd.set_grad_enabled(False) | |
sklearn_model = pickle.load(open('classic_pipeline.pickle', 'rb')) | |
model_name = "AbstractQbit/electra_large_imdb_htsplice" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = ElectraForSequenceClassification.from_pretrained(model_name) | |
model_reg_name = "AbstractQbit/electra_large_imdb_regression_htsplice" | |
model_reg = ElectraForSequenceClassification.from_pretrained(model_reg_name) | |
def tokenize_with_splicing(text): | |
tokens = tokenizer(text, truncation=False) | |
if len(tokens['input_ids']) > 512: | |
tokens['input_ids'] = tokens['input_ids'][:129] + \ | |
[102] + tokens['input_ids'][-382:] | |
tokens['token_type_ids'] = [0]*512 | |
tokens['attention_mask'] = [1]*512 | |
return tokens | |
def make_stars_from_confidence(prob): | |
stars = round(1 + prob*9) | |
return '★'*stars + '☆'*(10-stars) | |
def make_stars_from_rating(rating): | |
stars = round(float(torch.clamp(rating, 1, 10))) | |
return '★'*stars + '☆'*(10-stars) | |
def run_models(review): | |
prob_sklearn = float(sklearn_model.predict_proba([review])[0][1]) | |
label_sklearn = 'positive' if prob_sklearn > 0.5 else 'negative' | |
res = f"TF-IDF SVC trained with polarity classification thinks the review is {label_sklearn} ({100*prob_sklearn:.2f}% positive confidence).\n{make_stars_from_confidence(prob_sklearn):s}\n\n" | |
input = tokenize_with_splicing(review).convert_to_tensors('pt', True) | |
output = torch.nn.functional.softmax(model(**input).logits, dim=1) | |
prob_electra = float(output[0][1]) | |
label_electra = 'positive' if prob_electra > 0.5 else 'negative' | |
res += f"ELECTRA trained with polarity classification thinks the review is {label_electra} ({100*prob_electra:.2f}% positive confidence).\n{make_stars_from_confidence(prob_electra):s}\n\n" | |
rating_electra_reg = model_reg(**input).logits[0,0] | |
res += f"ELECTRA trained with rating regression thinks the review is rated {rating_electra_reg:.2f}★.\n{make_stars_from_rating(rating_electra_reg):s}" | |
return res | |
demo = gr.Interface( | |
fn=run_models, | |
inputs="text", | |
outputs="text", | |
title="Movie review classification", | |
allow_flagging='never' | |
) | |
demo.launch() | |