Upload folder using huggingface_hub
Browse files- GradioLMstudioInterface.py +69 -79
GradioLMstudioInterface.py
CHANGED
@@ -1,103 +1,93 @@
|
|
1 |
import gradio as gr
|
2 |
import requests
|
3 |
|
4 |
-
# LM Studio REST API
|
5 |
BASE_URL = "http://localhost:1234/api/v0"
|
6 |
|
7 |
-
#
|
8 |
-
def chat_with_lmstudio(messages):
|
9 |
-
|
10 |
payload = {
|
11 |
-
"model":
|
12 |
"messages": messages,
|
13 |
-
"temperature":
|
14 |
-
"max_tokens":
|
15 |
"stream": False
|
16 |
}
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
|
|
|
|
|
|
21 |
|
22 |
-
#
|
23 |
-
def
|
24 |
-
|
25 |
payload = {
|
26 |
-
"model":
|
27 |
"prompt": prompt,
|
28 |
-
"temperature":
|
29 |
-
"max_tokens":
|
30 |
"stream": False
|
31 |
}
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
|
|
|
|
|
|
36 |
|
37 |
-
#
|
38 |
-
def
|
39 |
-
|
40 |
payload = {
|
41 |
-
"model":
|
42 |
"input": text
|
43 |
}
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
|
|
|
|
|
|
48 |
|
49 |
-
# Gradio
|
50 |
-
def
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
# Get response from LM Studio
|
60 |
-
response = chat_with_lmstudio(messages)
|
61 |
-
|
62 |
-
# Update history with the assistant's response
|
63 |
-
history.append((user_input, response))
|
64 |
-
return history, history
|
65 |
|
66 |
-
|
67 |
-
|
68 |
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
).launch()
|
77 |
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
outputs=
|
84 |
-
title="Text Embedding with LM Studio"
|
85 |
-
).launch()
|
86 |
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
gr.
|
91 |
-
|
92 |
-
|
93 |
-
""")
|
94 |
-
|
95 |
-
with gr.Row():
|
96 |
-
gr.Button("Chat with Model").click(gradio_chat_interface)
|
97 |
-
gr.Button("Text Completion").click(gradio_text_completion)
|
98 |
-
gr.Button("Text Embedding").click(gradio_text_embedding)
|
99 |
|
100 |
-
demo.launch()
|
101 |
-
|
102 |
-
if __name__ == "__main__":
|
103 |
-
main()
|
|
|
1 |
import gradio as gr
|
2 |
import requests
|
3 |
|
4 |
+
# Base URL for LM Studio REST API
|
5 |
BASE_URL = "http://localhost:1234/api/v0"
|
6 |
|
7 |
+
# Chat completions function
|
8 |
+
def chat_with_lmstudio(messages, model, temperature=0.7, max_tokens=150):
|
9 |
+
endpoint = f"{BASE_URL}/chat/completions"
|
10 |
payload = {
|
11 |
+
"model": model,
|
12 |
"messages": messages,
|
13 |
+
"temperature": temperature,
|
14 |
+
"max_tokens": max_tokens,
|
15 |
"stream": False
|
16 |
}
|
17 |
+
try:
|
18 |
+
response = requests.post(endpoint, json=payload)
|
19 |
+
response.raise_for_status()
|
20 |
+
data = response.json()
|
21 |
+
return data["choices"][0]["message"]["content"]
|
22 |
+
except requests.RequestException as e:
|
23 |
+
return f"Error: {str(e)}"
|
24 |
|
25 |
+
# Text completions function
|
26 |
+
def text_completion(prompt, model, temperature=0.7, max_tokens=150):
|
27 |
+
endpoint = f"{BASE_URL}/completions"
|
28 |
payload = {
|
29 |
+
"model": model,
|
30 |
"prompt": prompt,
|
31 |
+
"temperature": temperature,
|
32 |
+
"max_tokens": max_tokens,
|
33 |
"stream": False
|
34 |
}
|
35 |
+
try:
|
36 |
+
response = requests.post(endpoint, json=payload)
|
37 |
+
response.raise_for_status()
|
38 |
+
data = response.json()
|
39 |
+
return data["choices"][0]["text"]
|
40 |
+
except requests.RequestException as e:
|
41 |
+
return f"Error: {str(e)}"
|
42 |
|
43 |
+
# Embeddings function
|
44 |
+
def text_embedding(text, model):
|
45 |
+
endpoint = f"{BASE_URL}/embeddings"
|
46 |
payload = {
|
47 |
+
"model": model,
|
48 |
"input": text
|
49 |
}
|
50 |
+
try:
|
51 |
+
response = requests.post(endpoint, json=payload)
|
52 |
+
response.raise_for_status()
|
53 |
+
data = response.json()
|
54 |
+
return data["data"][0]["embedding"]
|
55 |
+
except requests.RequestException as e:
|
56 |
+
return f"Error: {str(e)}"
|
57 |
|
58 |
+
# Gradio Interface
|
59 |
+
def chat_interface(user_message, history, model="granite-3.0-2b-instruct"):
|
60 |
+
if history is None:
|
61 |
+
history = []
|
62 |
+
history.append({"role": "user", "content": user_message})
|
63 |
+
assistant_response = chat_with_lmstudio(history, model=model)
|
64 |
+
history.append({"role": "assistant", "content": assistant_response})
|
65 |
+
conversation = [(h["content"], history[i+1]["content"]) for i, h in enumerate(history[:-1]) if h["role"] == "user"]
|
66 |
+
return conversation, history
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
+
with gr.Blocks() as demo:
|
69 |
+
gr.Markdown("# LM Studio API Interface")
|
70 |
|
71 |
+
with gr.Tab("Chat with Model"):
|
72 |
+
chat_history = gr.State([])
|
73 |
+
chat_model = gr.Textbox(value="granite-3.0-2b-instruct", label="Model")
|
74 |
+
chatbot = gr.Chatbot()
|
75 |
+
msg = gr.Textbox(placeholder="Enter your message", label="User Input")
|
76 |
+
submit_btn = gr.Button("Send")
|
77 |
+
submit_btn.click(chat_interface, inputs=[msg, chat_history, chat_model], outputs=[chatbot, chat_history])
|
|
|
78 |
|
79 |
+
with gr.Tab("Text Completion"):
|
80 |
+
completion_prompt = gr.Textbox(placeholder="Enter a prompt for text completion", label="Prompt")
|
81 |
+
completion_model = gr.Textbox(value="granite-3.0-2b-instruct", label="Model")
|
82 |
+
completion_output = gr.Textbox(label="Completion")
|
83 |
+
generate_btn = gr.Button("Generate")
|
84 |
+
generate_btn.click(text_completion, inputs=[completion_prompt, completion_model], outputs=completion_output)
|
|
|
|
|
85 |
|
86 |
+
with gr.Tab("Text Embeddings"):
|
87 |
+
embedding_text = gr.Textbox(placeholder="Enter text for embeddings", label="Input Text")
|
88 |
+
embedding_model = gr.Textbox(value="text-embedding-nomic-embed-text-v1.5", label="Model")
|
89 |
+
embedding_output = gr.JSON(label="Embeddings")
|
90 |
+
embed_btn = gr.Button("Get Embeddings")
|
91 |
+
embed_btn.click(text_embedding, inputs=[embedding_text, embedding_model], outputs=embedding_output)
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
|
93 |
+
demo.launch(share=True)
|
|
|
|
|
|