File size: 3,334 Bytes
542f845
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import gradio as gr
import requests

# LM Studio REST API base URL
BASE_URL = "http://localhost:1234/api/v0"

# Function to handle chat completions
def chat_with_lmstudio(messages):
    url = f"{BASE_URL}/chat/completions"
    payload = {
        "model": "granite-3.0-2b-instruct",  # Replace with the model you have loaded
        "messages": messages,
        "temperature": 0.7,
        "max_tokens": 1024,
        "stream": False
    }
    response = requests.post(url, json=payload)
    response.raise_for_status()
    response_data = response.json()
    return response_data['choices'][0]['message']['content']

# Function to handle text completions
def get_text_completion(prompt):
    url = f"{BASE_URL}/completions"
    payload = {
        "model": "granite-3.0-2b-instruct",  # Replace with the model you have loaded
        "prompt": prompt,
        "temperature": 0.7,
        "max_tokens": 100,
        "stream": False
    }
    response = requests.post(url, json=payload)
    response.raise_for_status()
    response_data = response.json()
    return response_data['choices'][0]['text']

# Function to handle text embeddings
def get_text_embedding(text):
    url = f"{BASE_URL}/embeddings"
    payload = {
        "model": "text-embedding-nomic-embed-text-v1.5",  # Replace with your embedding model
        "input": text
    }
    response = requests.post(url, json=payload)
    response.raise_for_status()
    response_data = response.json()
    return response_data['data'][0]['embedding']

# Gradio interface for chat
def gradio_chat_interface():
    def chat_interface(user_input, history):
        # Format history in LM Studio messages format
        messages = []
        for user_msg, assistant_msg in history:
            messages.append({"role": "user", "content": user_msg})
            messages.append({"role": "assistant", "content": assistant_msg})
        messages.append({"role": "user", "content": user_input})
        
        # Get response from LM Studio
        response = chat_with_lmstudio(messages)
        
        # Update history with the assistant's response
        history.append((user_input, response))
        return history, history

    chat_interface = gr.ChatInterface(chat_interface)
    chat_interface.launch()

# Gradio interface for text completion
def gradio_text_completion():
    gr.Interface(
        fn=get_text_completion,
        inputs="text",
        outputs="text",
        title="Text Completion with LM Studio"
    ).launch()

# Gradio interface for text embedding
def gradio_text_embedding():
    gr.Interface(
        fn=get_text_embedding,
        inputs="text",
        outputs="text",
        title="Text Embedding with LM Studio"
    ).launch()

# Main menu to choose the interface
def main():
    with gr.Blocks() as demo:
        gr.Markdown("""

        # LM Studio API Interface

        Choose which function you want to use with LM Studio:

        """)
        
        with gr.Row():
            gr.Button("Chat with Model").click(gradio_chat_interface)
            gr.Button("Text Completion").click(gradio_text_completion)
            gr.Button("Text Embedding").click(gradio_text_embedding)

    demo.launch()

if __name__ == "__main__":
    main()