Spaces:
Sleeping
Sleeping
File size: 8,876 Bytes
8dadd45 ddd4259 8dadd45 2154fa4 8dadd45 429ff46 8dadd45 5cc0865 8dadd45 59bc1ac 8dadd45 2f64d07 5bec6c1 8dadd45 5cc0865 8dadd45 f1bce8e 8dadd45 5925432 2154fa4 8dadd45 5925432 8dadd45 2154fa4 5925432 8dadd45 5925432 8dadd45 5925432 8dadd45 5cc0865 8dadd45 fcb1298 8dadd45 fcb1298 8dadd45 fcb1298 8dadd45 b771b75 1fa9db7 fcb1298 8dadd45 b771b75 8dadd45 b771b75 2154fa4 b771b75 2154fa4 8dadd45 2154fa4 862f4db 8dadd45 18a682d 5cc0865 f649b89 18a682d 8dadd45 fcb1298 8dadd45 5cc0865 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 |
import streamlit as st
import os
import numpy as np
import re
import tempfile
from datetime import datetime
from transformers import AutoModelForCausalLM, AutoTokenizer
from langchain_community.document_loaders import PDFPlumberLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_community.llms import Ollama
from langchain.retrievers import BM25Retriever, EnsembleRetriever
from sentence_transformers import CrossEncoder
from transformers import pipeline
from langchain_core.prompts import PromptTemplate
from langchain.chains import LLMChain
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
from langchain.llms.huggingface_pipeline import HuggingFacePipeline
from huggingface_hub import login
# Load the model and tokenizer
model_name= "Qwen/Qwen2.5-0.5B-Instruct"
# Initialize classifier once for input guardrail
classifier = pipeline("zero-shot-classification",
model="typeform/distilbert-base-uncased-mnli")
# Streamlit UI Configuration
st.set_page_config(page_title="Multi-File Financial Analyzer", layout="wide")
st.title("π Financial Analysis System")
# Sidebar Controls
with st.sidebar:
st.header("Configuration Panel")
model_choice = st.selectbox("LLM Model",
[model_name],
help="Choose the core analysis engine")
chunk_size = st.slider("Document Chunk Size", 500, 2000, 1000)
rerank_threshold = st.slider("Re-ranking Threshold", 0.0, 1.0, 0.1)
# File Upload Handling for multiple files
uploaded_files = st.file_uploader("Upload Financial PDFs",
type="pdf",
accept_multiple_files=True)
if uploaded_files:
all_docs = []
with st.spinner("Processing Multiple Financial Documents..."):
for uploaded_file in uploaded_files:
# Create temporary file for each PDF
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tmp:
tmp.write(uploaded_file.getvalue())
tmp_path = tmp.name
# Load and process each document
loader = PDFPlumberLoader(tmp_path)
docs = loader.load()
all_docs.extend(docs)
# Combined Document Processing
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=chunk_size,
chunk_overlap=200,
separators=["\n\n", "\n", "\. ", "! ", "? ", " ", ""]
)
documents = text_splitter.split_documents(all_docs)
# Hybrid Retrieval Setup for combined documents
embedder = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
vector_store = FAISS.from_documents(documents, embedder)
bm25_retriever = BM25Retriever.from_documents(documents)
bm25_retriever.k = 5
faiss_retriever = vector_store.as_retriever(search_kwargs={"k": 5})
ensemble_retriever = EnsembleRetriever(
retrievers=[bm25_retriever, faiss_retriever],
weights=[0.4, 0.6]
)
# Re-ranking Model
cross_encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
# Financial Analysis LLM Configuration
tokenizer = AutoTokenizer.from_pretrained(
model_name,
trust_remote_code=True,
)
model = AutoModelForCausalLM.from_pretrained(
model_name,
trust_remote_code=True,
)
# Update prompt template
PROMPT_TEMPLATE = """
<|User|>
You are a senior financial analyst. Analyze these financial reports:
1. Compare key metrics between documents
2. Identify trends across reporting periods
3. Highlight differences/similarities
4. Provide risk assessment
5. Offer recommendations
Format response with clear sections and bullet points. Keep under 300 words.
Context: {context}
Question: {question}
<|assistant|>
"""
# chat prompt template
qa_prompt = PromptTemplate(
template=PROMPT_TEMPLATE,
input_variables=["context", "question"]
)
# Interactive Q&A Interface
st.header("π Cross-Document Financial Inquiry")
# Suggested Comparative Questions
comparative_questions = [
"Analyze changes in debt structure across both reports",
"Show expense ratio differences between the two years",
"What are the main liquidity changes across both periods?",
]
user_query = st.selectbox("Sample Financial Questions",
[""] + comparative_questions)
user_input = st.text_input("Or enter custom financial query:",
value=user_query)
if user_input:
# Input Validation Guardrail
classification = classifier(user_input,
["financial", "other"],
multi_label=False)
print(f"-- Guard rail check is completed for query with prob:{classification['scores'][0]}")
if classification['scores'][0] < 0.7:
st.error("Query not related to financial. Ask about financial related queries")
st.stop()
with st.spinner("Performing Cross-Document Analysis..."):
# Hybrid Document Retrieval
initial_docs = ensemble_retriever.get_relevant_documents(user_input)
# Context Re-ranking
doc_pairs = [(user_input, doc.page_content) for doc in initial_docs]
rerank_scores = cross_encoder.predict(doc_pairs)
sorted_indices = np.argsort(rerank_scores)[::-1]
ranked_docs = [initial_docs[i] for i in sorted_indices]
filtered_docs = [d for d, s in zip(ranked_docs, rerank_scores)
if s > rerank_threshold][:7]
print(f"-- Retrieved chunks:{filtered_docs}")
# Confidence Calculation
confidence_score = np.mean(rerank_scores[sorted_indices][:3]) * 100
confidence_score = min(100, max(0, round(confidence_score, 1)))
# Response Generation
context = "\n".join([doc.page_content for doc in filtered_docs])
print(f"-- Retrieved context:{context}")
# prompt
prompt = qa_prompt.format(context=context, question=user_input)
####
# Generation
messages = [
{"role": "system", "content": "You are Financial assistant."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
print(f"-- Model Invoking")
generated_ids = model.generate(
**model_inputs,
max_new_tokens=512
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
analysis = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
###
print(f"Analysis result:{analysis}")
# Response Cleaning
clean_analysis = re.sub(r"<think>|</think>|\n{3,}", "", analysis)
clean_analysis = re.sub(r'(\d)([A-Za-z])', r'\1 \2', clean_analysis)
clean_analysis = re.sub(r'(\d{1,3})(\d{3})', r'\1,\2', clean_analysis)
# Input Display
st.subheader("User Query+Context to the LLM")
st.markdown(f"```\n{qa_prompt.format(context=context, question=user_input)}\n```")
# Results Display
st.subheader("Integrated Financial Analysis")
st.markdown(f"```\n{clean_analysis}\n```")
st.progress(int(confidence_score)/100)
st.caption(f"Analysis Confidence: {confidence_score}%")
# Export Functionality
if st.button("Generate Financial Analysis Report"):
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
export_content = f"COMPARATIVE QUERY: {user_input}\n\nANALYSIS:\n{clean_analysis}"
st.download_button("Download Full Report", export_content,
file_name=f"Comparative_Analysis_{timestamp}.txt",
mime="text/plain")
else:
st.info("Please upload PDF financial reports to begin financial analysis") |