|
import gdown |
|
import cv2 |
|
import numpy as np |
|
import gradio as gr |
|
import matplotlib.pyplot as plt |
|
from gradio_client import Client, handle_file |
|
|
|
|
|
drive_links = { |
|
1: "https://drive.google.com/file/d/1xtzL6-TpN4EVyaFUF4MM4ssjAZqZutF8/view?usp=drive_link", |
|
2: "https://drive.google.com/file/d/1UpPfOlDXoWwB5Ub530uhUrOVnUnWYvpQ/view?usp=drive_link", |
|
3: "https://drive.google.com/file/d/11iFgmm-uGOwc2nRtQeMTBTmQqwUNVKi6/view?usp=drive_link", |
|
4: "https://drive.google.com/file/d/1FL1uLEXlWW-nQYNoaBARiVs0N0XAwsvW/view?usp=drive_link", |
|
5: "https://drive.google.com/file/d/1nZhl1CkvuH-KA4ErAslD-91W2QnBajhx/view?usp=drive_link", |
|
6: "https://drive.google.com/file/d/1SHEgykTZN9lGdDaR6PTl9P01-Zlpu6cZ/view?usp=drive_link", |
|
7: "https://drive.google.com/file/d/1qLOmVAgxQ6AiAPPzgLqSenVahIilSb-s/view?usp=drive_link" |
|
} |
|
|
|
|
|
def extract_file_id(drive_url): |
|
return drive_url.split("/d/")[1].split("/view")[0] |
|
|
|
|
|
def download_from_drive(file_id, save_path): |
|
gdown.download(f"https://drive.google.com/uc?id={file_id}", save_path, quiet=False) |
|
return save_path |
|
|
|
|
|
def extract_signature(document_image_path): |
|
client = Client("tech4humans/signature-detection") |
|
result = client.predict( |
|
image=handle_file(document_image_path), |
|
conf_thres=0.25, |
|
iou_thres=0.5, |
|
api_name="/process_image" |
|
) |
|
|
|
extracted_signature_info = result[0] |
|
extracted_signature_path = ( |
|
extracted_signature_info.get("path") if isinstance(extracted_signature_info, dict) |
|
else extracted_signature_info if isinstance(extracted_signature_info, str) |
|
else None |
|
) |
|
|
|
if extracted_signature_path: |
|
image = cv2.imread(extracted_signature_path) |
|
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) |
|
thresh = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, |
|
cv2.THRESH_BINARY_INV, 11, 2) |
|
contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) |
|
|
|
valid_contours = [] |
|
for cnt in contours: |
|
x, y, w, h = cv2.boundingRect(cnt) |
|
area = w * h |
|
aspect_ratio = w / float(h) |
|
if 500 < area < 50000 and 0.2 < aspect_ratio < 5.0: |
|
valid_contours.append((x, y, w, h)) |
|
|
|
if valid_contours: |
|
x, y, w, h = max(valid_contours, key=lambda b: b[2] * b[3]) |
|
cropped_signature = image[y:y+h, x:x+w] |
|
return cropped_signature |
|
return None |
|
|
|
|
|
def orb_similarity(img1, img2, distance_threshold=50): |
|
gray1, gray2 = [ |
|
cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) if len(img.shape) == 3 else img |
|
for img in [img1, img2] |
|
] |
|
|
|
orb = cv2.ORB_create() |
|
kp1, des1 = orb.detectAndCompute(gray1, None) |
|
kp2, des2 = orb.detectAndCompute(gray2, None) |
|
|
|
if des1 is None or des2 is None: |
|
return 0, None |
|
|
|
bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True) |
|
matches = sorted(bf.match(des1, des2), key=lambda x: x.distance) |
|
|
|
good_matches = [m for m in matches if m.distance < distance_threshold] |
|
similarity = len(good_matches) / len(matches) if matches else 0 |
|
return similarity, (kp1, kp2, good_matches, matches) |
|
|
|
|
|
def verify_signature(document_image, reference_number): |
|
if reference_number not in drive_links: |
|
return "Invalid reference number selected.", None |
|
|
|
|
|
file_id = extract_file_id(drive_links[reference_number]) |
|
reference_image_path = f"reference_signature_{reference_number}.jpg" |
|
download_from_drive(file_id, reference_image_path) |
|
|
|
|
|
cropped_signature = extract_signature(document_image) |
|
if cropped_signature is None: |
|
return "Signature extraction failed.", None |
|
|
|
|
|
reference_img = cv2.imread(reference_image_path) |
|
if reference_img is None: |
|
return "Error: Could not load the reference image.", None |
|
|
|
|
|
similarity, details = orb_similarity(cropped_signature, reference_img) |
|
similarity_percentage = round(similarity * 100, 2) |
|
|
|
|
|
if similarity_percentage > 55: |
|
classification = "β
Matched" |
|
elif 40 <= similarity_percentage <= 55: |
|
classification = "β οΈ Manual Check Recommended" |
|
else: |
|
classification = "β Not Matched" |
|
|
|
|
|
matched_img = None |
|
if details is not None: |
|
kp1, kp2, good_matches, _ = details |
|
matched_img = cv2.drawMatches(cropped_signature, kp1, reference_img, kp2, good_matches, None, flags=2) |
|
|
|
return f"π Similarity Score: {similarity_percentage}%\nπ {classification}", matched_img |
|
|
|
|
|
interface = gr.Interface( |
|
fn=verify_signature, |
|
inputs=[ |
|
gr.Image(type="filepath", label="Upload Document Image"), |
|
gr.Number(label="Enter Reference policynumber", precision=0) |
|
], |
|
outputs=[ |
|
gr.Textbox(label="Verification Result"), |
|
gr.Image(label="Signature Matching Visualization") |
|
], |
|
title="ποΈ Signature Verification System", |
|
description="Upload a document with a signature, select a policy number, and verify its authenticity.", |
|
theme="compact" |
|
) |
|
|
|
|
|
interface.launch(server_name="0.0.0.0", show_api=True) |